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Abstract. The goal of this paper is to prove that oniveau spetral

sequenes are motivially funtorial for all ohomology theories that

ould be fatorized through motives. To this end the motif of a smooth

variety over a ountable �eld k is deomposed (in the sense of Post-

nikov towers) into twisted (o)motives of its points; this is generalized

to arbitrary Voevodsky's motives. In order to study the funtorial-

ity of this onstrution, we use the formalism of weight strutures

(introdued in the previous paper). We also develop this formalism

(for general triangulated ategories) further, and relate it with a new

notion of a nie duality (pairing) of (two distint) triangulated ate-

gories; this piee of homologial algebra ould be interesting for itself.

We onstrut a ertain Gersten weight struture for a triangulated

ategory of omotives that ontains DMeff
gm as well as (o)motives of

funtion �elds over k. It turns out that the orresponding weight spe-

tral sequenes generalize the lassial oniveau ones (to ohomology of

arbitrary motives). When a ohomologial funtor is represented by a

Y ∈ ObjDMeff
− , the orresponding oniveau spetral sequenes an

be expressed in terms of the (homotopy) t-trunations of Y ; this ex-

tends to motives the seminal oniveau spetral sequene omputations

of Bloh and Ogus.

We also obtain that the omotif of a smooth onneted semi-loal

sheme is a diret summand of the omotif of its generi point; o-

motives of funtion �elds ontain twisted omotives of their residue

�elds (for all geometri valuations). Hene similar results hold for any

ohomology of (semi-loal) shemes mentioned.
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Introduction

Let k be our perfet base �eld.

We reall two very important statements onerning oniveau spetral se-

quenes. The �rst one is the alulation of E2 of the oniveau spetral se-

quene for ohomologial theories that satisfy ertain onditions; see [5℄ and

[8℄. It was proved by Voevodsky that these onditions are ful�lled by any the-

ory H represented by a motivi omplex C (i.e. an objet of DMeff
− ; see [25℄);

then the E2-terms of the spetral sequene ould be alulated in terms of the

(homotopy t-struture) ohomology of C. This result implies the seond one:

H-ohomology of a smooth onneted semi-loal sheme (in the sense of �4.4

of [26℄) injets into the ohomology of its generi point; the latter statement

was extended to all (smooth onneted) primitive shemes by M. Walker.

The main goal of the present paper is to onstrut (motivially) funtorial

oniveau spetral sequenes onverging to ohomology of arbitrary motives;

there should exist a desription of these spetral sequenes (starting from E2)

that is similar to the desription for the ase of ohomology of smooth varieties

(mentioned above).

A related objetive is to larify the nature of the injetivity result mentioned;

it turned our that (in the ase of a ountable k) the ohomology of a smooth

onneted semi-loal (more generally, primitive) sheme is atually a diret

summand of the ohomology of its generi point. Moreover, the (twisted) o-

homology of a residue �eld of a funtion �eld K/k (for any geometri valuation

of K) is a diret summand of the ohomology of K. We atually prove more

in �4.3.
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Our main homologial algebra tool is the theory of weight strutures (in trian-

gulated ategories; we usually denote a weight struture by w) introdued in

the previous paper [6℄. In this artile we develop it further; this part of the

paper ould be interesting also to readers not aquainted with motives (and

ould be read independently from the rest of the paper). In partiular, we

study nie dualities (ertain pairings) of (two distint) triangulated ategories;

it seems that this subjet was not previously onsidered in the literature at all.

This allows us to generalize the onept of adjaent weight and t-strutures (t)
in a triangulated ategory (developed in �4.4 of [6℄): we introdue the notion

of orthogonal strutures in (two possibly distint) triangulated ategories. If Φ
is a nie duality of triangulated C,D, X ∈ ObjC, Y ∈ ObjD, t is orthogonal
to w, then the spetral sequene S onverging to Φ(X,Y ) that omes from

the t-trunations of Y is naturally isomorphi (starting from E2) to the weight

spetral sequene T for the funtor Φ(−, Y ). T omes from weight trunations of

X (note that those generalize stupid trunations for omplexes). Our approah

yields an abstrat alternative to the method of omparing similar spetral se-

quenes using �ltered omplexes (developed by Deligne and Paranjape, and

used in [22℄, [11℄, and [6℄). Note also that we relate t-trunations in D with

virtual t-trunations of ohomologial funtors on C. Virtual t-trunations for
ohomologial funtors are de�ned for any (C,w) (we do not need any trian-

gulated 'ategories of funtors' or t-strutures for them here); this notion was

introdued in �2.5 of [6℄ and is studied further in the urrent paper.

Now, we explain why we really need a ertain new ategory of omotives (on-

taining Voevodsky's DMeff
gm ), and so the theory of adjaent strutures (i.e.

orthogonal strutures in the ase C = D, Φ = C(−,−)) is not su�ient for our

purposes. It was already proved in [6℄ that weight strutures provide a power-

ful tool for onstruting spetral sequenes; they also relate the ohomology of

objets of triangulated ategories with t-strutures adjaent to them. Unfortu-

nately, a weight struture orresponding to oniveau spetral sequenes annot

exist on DMeff
− ⊃ DMeff

gm sine these ategories do not ontain (any) motives

for funtion �elds over k (as well as motives of other shemes not of �nite type

over k; still f. Remark 4.5.4(5)). Yet these motives should generate the heart

of this weight struture (sine the objets of this heart should orepresent o-

variant exat funtors from the ategory of homotopy invariant sheaves with

transfers to Ab).

So, we need a ategory that would ontain ertain homotopy limits of objets of

DMeff
gm . We sueed in onstruting a triangulated ategory D (of omotives)

that allows us to reah the objetives listed. Unfortunately, in order to ontrol

morphisms between homotopy limits mentioned we have to assume k to be

ountable. In this ase there exists a large enough triangulated ategory Ds

(DMeff
gm ⊂ Ds ⊂ D) endowed with a ertain Gersten weight struture w; its

heart is 'generated' by omotives of funtion �elds. w is (left) orthogonal to the

homotopy t-struture on DMeff
− and (so) is losely onneted with oniveau

spetral sequenes and Gersten resolutions for sheaves. Note still: we need k
to be ountable only in order to onstrut the Gersten weight struture. So
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those readers who would just want to have a ategory that ontains reasonable

homotopy limits of geometri motives (inluding omotives of funtion �elds

and of smooth semi-loal shemes), and onsider ohomology theories for this

ategory, may freely ignore this restrition. Moreover, for an arbitrary k one

an still pass to a ountable homotopy limit in the Gysin distinguished triangle

(as in Proposition 3.6.1). Yet for an unountable k ountable homotopy limits

don't seem to be interesting; in partiular, they de�nitely do not allow to

onstrut a Gersten weight struture (in this ase).

So, we onsider a ertain triangulated ategory D ⊃ DMeff
gm that (roughly!)

'onsists of' (ovariant) homologial funtors DMeff
gm → Ab. In partiular,

objets of D de�ne ovariant funtors SmV ar → Ab (whereas another 'big'

motivi ategory DMeff
− de�ned by Voevodsky is onstruted from ertain

sheaves i.e. ontravariant funtors SmV ar → Ab; this is also true for all

motivi homotopy ategories of Voevodsky and Morel). Besides, DMeff
gm yields

a family of (weak) oompat ogenerators for D. This is why we all objets of

D omotives. Yet note that the embedding DMeff
gm → D is ovariant (atually,

we invert the arrows in the orresponding 'ategory of funtors' in order to

make the Yoneda embedding funtor ovariant), as well as the funtor that

sends a smooth sheme U (not neessarily of �nite type over k) to its omotif

(whih oinides with its motif if U is a smooth variety).

We also reall the Chow weight struture w′
Chow introdued in [6℄; the orre-

sponding Chow-weight spetral sequenes are isomorphi to the lassial (i.e.

Deligne's) weight spetral sequenes when the latter are de�ned. w′
Chow ould

be naturally extended to a weight struture wChow for D. We always have

a natural omparison morphism from the Chow-weight spetral sequene for

(H,X) to the orresponding oniveau one; it is an isomorphism for any bira-

tional ohomology theory. We onsider the ategory of birational omotives

Dbir i.e. the loalization of D by D(1) (that ontains the ategory of birational

geometri motives introdued in [15℄; though some of the results of this unpub-

lished preprint are erroneous, this makes no di�erene for the urrent paper).

It turns our that w and wChow indue the same weight struture w′
bir on Dbir.

Conversely, starting from w′
bir one an 'glue' (from slies) the weight strutures

indued by w and wChow on D/D(n) for all n > 0. Moreover, these strutures

belong to an interesting family of weight strutures indexed by a single integral

parameter! It ould be interesting to onsider other members of this family. We

relate brie�y these observations with those of A. Beilinson (in [3℄ he proposed

a 'geometri' haraterization of the onjetural motivi t-struture).
Now we desribe the onnetion of our results with related results of F. Deglise

(see [9℄, [10℄, and [11℄; note that the two latter papers are not published at the

moment yet). He onsiders a ertain ategory of pro-motives whose objets

are naive inverse limits of objets of DMeff
gm (this ategory is not triangulated,

though it is pro-triangulated in a ertain sense). This approah allows to ob-

tain (in a universal way) lassial oniveau spetral sequenes for ohomology

of motives of smooth varieties; Deglise also proves their relation with the homo-

topy t-trunations for ohomology represented by an objet of DMeff
− . Yet for
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ohomology theories not oming from motivi omplexes, this method does not

seem to extend to (spetral sequenes for ohomology of) arbitrary motives;

motivi funtoriality is not obvious also. Moreover, Deglise didn't prove that

the pro-motif of a (smooth onneted) semi-loal sheme is a diret summand

of the pro-motif of its generi point (though this is true, at least in the ase of

a ountable k). We will tell muh more about our strategy and on the relation

of our results with those of Deglise in �1.5 below. Note also that our methods

are muh more onvenient for studying funtoriality (of oniveau spetral se-

quenes) than the methods applied by M. Rost in the related ontext of yle

modules (see [24℄ and �4 of [10℄).

The author would like to indiate the interdependenies of the parts of this

text (in order to simplify reading for those who are not interested in all of

it). Those readers who are not (very muh) interested in (oniveau) spetral

sequenes, may avoid most of setion 2 and read only ��2.1 �2.2 (Remark 2.2.2

ould also be ignored). Moreover, in order to prove our diret summands results

(i.e. Theorem 4.2.1, Corollary 4.2.2, and Proposition 4.3.1) one needs only a

small portion of the theory of weight strutures; so a reader very relutant

to study this theory may try to derive them from the results of �3 'by hand'

without reading �2 at all. Still, for motivi funtoriality of oniveau spetral

sequenes and �ltrations (see Proposition 4.4.1 and Remark 4.4.2) one needs

more of weight strutures. On the other hand, those readers who are more

interested in the (general) theory of triangulated ategories may restrit their

attention to ��1.1� 1.2 and �2; yet note that the rest of the paper desribes in

detail an important (and quite non-trivial) example of a weight struture whih

is orthogonal to a t-struture with respet to a nie duality (of triangulated

ategories). Moreover, muh of setion �4 ould also be extended to a general

setting of a triangulated ategory satisfying properties similar to those listed

in Proposition 3.1.1; yet the author hose not to do this in order to make the

paper somewhat less abstrat.

Now we list the ontents of the paper. More details ould be found at the

beginnings of setions.

We start �1 with the reolletion of t-strutures, idempotent ompletions, and

Postnikov towers for triangulated ategories. We desribe a method for extend-

ing ohomologial funtors from a full triangulated subategory to the whole

C (after H. Krause). Next we reall some results and de�nitions for Voevod-

sky's motives (this inludes ertain properties of Tate twists for motives and

ohomologial funtors). Lastly, we de�ne pro-motives (following Deglise) and

ompare them with our triangulated ategory D of omotives. This allows to

explain our strategy step by step.

�2 is dediated to weight strutures. First we remind the basis of this theory

(developed in �[6℄). Next we reall that a ohomologial funtor H from an

(arbitrary triangulated ategory) C endowed with a weight struture w ould

be 'trunated' as if it belonged to some triangulated ategory of funtors (from

C) that is endowed with a t-struture; we all the orresponding piees of H its

virtual t-trunations. We reall the notion of a weight spetral sequene (intro-
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dues in ibid.). We prove that the derived exat ouple for a weight spetral

sequene ould be desribed in terms of virtual t-trunations. Next we intro-

due the de�nition a (nie) duality Φ : Cop×D → A (here D is triangulated, A
is abelian), and of orthogonal weight and t-strutures (with respet to Φ). If w
is orthogonal to t, then the virtual t-trunations (orresponding to w) of fun-
tors of the type Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via

Φ' by the atual t-trunations of Y (orresponding to t). Hene if w and t are
orthogonal with respet to a nie duality, the weight spetral sequene onverg-

ing to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is naturally isomorphi (starting

from E2) to the one oming from t-trunations of Y . We also mention some

alternatives and predeessors of our results. Lastly we ompare weight deom-

positions, virtual t-trunations, and weight spetral sequenes orresponding

to distint weight strutures (in possibly distint triangulated ategories).

In �3 we desribe the main properties of D ⊃ DMeff
gm . The exat hoie of D is

not important for most of this paper; so we just list the main properties of D

(and its ertain enhanement D
′
) in �3.1. We onstrut D using the formalism

of di�erential graded modules in �5 later. Next we de�ne omotives for (ertain)

shemes and ind-shemes of in�nite type over k (we all them pro-shemes). We

reall the notion of a primitive sheme. All (smooth) semi-loal pro-shemes

are primitive; primitive shemes have all nie 'motivi' properties of semi-loal

pro-shemes. We prove that there are no D-morphisms of positive degrees

between omotives of primitive shemes (and also between ertain Tate twists

of those). In �3.6 we prove that the Gysin distinguished triangle for motives

of smooth varieties (in DMeff
gm ) ould be naturally extended to omotives of

pro-shemes. This allows to onstrut ertain Postnikov towers for omotives

of pro-shemes; these towers are losely related with lassial oniveau spetral

sequenes for ohomology.

�4 is entral in this paper. We introdue a ertain Gersten weight struture

for a ertain triangulated ategory Ds (DMeff
gm ⊂ Ds ⊂ D). We prove that

Postnikov towers onstruted in �3.6 are atually weight Postnikov towers with

respet to w. We dedue our (interesting) results on diret summands of omo-

tives of funtion �elds. We translate these results to ohomology in the obvious

way.

Next we prove that weight spetral sequenes for the ohomology of X (orre-

sponding to the Gersten weight struture) are naturally isomorphi (starting

from E2) to the lassial oniveau spetral sequenes if X is the motif of a

smooth variety; so we all these spetral sequene oniveau ones in the general

ase also. We also prove that the Gersten weight struture w (on Ds) is or-

thogonal to the homotopy t-struture t on DMeff
− (with respet to a ertain

Φ). It follows that for an arbitrary X ∈ ObjDMs
, for a ohomology theory

represented by Y ∈ ObjDMeff
− (any hoie of) the oniveau spetral sequene

that onverges to Φ(X,Y ) ould be desribed in terms of the t-trunations of
Y (starting from E2).

We also de�ne oniveau spetral sequenes for ohomology of motives over

unountable base �elds as the limits of the orresponding oniveau spetral
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sequenes over ountable perfet sub�elds of de�nition. This de�nition is om-

patible with the lassial one; so we establish motivi funtoriality of oniveau

spetral sequenes in this ase also.

We also prove that the Chow weight struture for DMeff
gm (introdued in �6 of

[6℄) ould be extended to a weight struture wChow on D. The orresponding

Chow-weight spetral sequenes are isomorphi to the lassial (i.e. Deligne's)

ones when the latter are de�ned (this was proved in [6℄ and [7℄). We ompare

oniveau spetral sequenes with Chow-weight ones: we always have a ompar-

ison morphism; it is an isomorphism for a birational ohomology theory. We

onsider the ategory of birational omotives Dbir i.e. the loalization of D by

D(1). w and wChow indue the same weight struture w′
bir on Dbir; one almost

an glue w and wChow from opies of w′
bir (one may say that these weight

strutures ould almost be glued from the same slies with distint shifts).

�5 is dediated to the onstrution of D and the proof of its properties. We

apply the formalism of di�erential graded ategories, modules over them, and of

the orresponding derived ategories. A reader not interested in these details

may skip (most of) this setion. In fat, the author is not sure that there

exists only one D suitable for our purposes; yet the hoie of D does not a�et

ohomology of (omotives of) pro-shemes and of Voevodsky's motives.

We also explain how the di�erential graded modules formalism an be used to

de�ne base hange (extension and restrition of salars) for omotives. This

allows to extend our results on diret summands of omotives (and ohomology)

of funtion �elds to pro-shemes obtained from them via base hange. We also

de�ne tensoring of omotives by motives (in partiular, this yields Tate twist

for D), as well as a ertain ointernal Hom (i.e. the orresponding left adjoint

funtor).

�6 is dediated to properties of omotives that are not (diretly) related with

the main results of the paper; we also make several omments. We reall the

de�nition of the additive ategory D
gen

of generi motives (studied in [9℄). We

prove that the exat onservative weight omplex funtor orresponding to w
(that exists by the general theory of weight strutures) ould be modi�ed to

an exat onservative WC : Ds → Kb(Dgen). Next we prove that a ofun-

tor Hw → Ab is representable by a homotopy invariant sheaf with transfers

whenever is onverts all produts into diret sums.

We also note that our theory ould be easily extended to (o)motives with o-

e�ients in an arbitrary ring. Next we note (after B. Kahn) that reasonable

motives of pro-shemes with ompat support do exist in DMeff
− ; this obser-

vation ould be used for the onstrution of an alternative model for D. Lastly

we desribe whih parts of our argument do not work (and whih do work) in

the ase of an unountable k.
A aution: the notion of a weight struture is quite a general formalism for

triangulated ategories. In partiular, one triangulated ategory an support

several distint weight strutures (note that there is a similar situation with

t-strutures). In fat, we onstrut an example for suh a situation in this

paper (ertainly, muh simpler examples exist): we de�ne the Gersten weight
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struture w for Ds and a Chow weight struture wChow for D. Moreover, we

show in �4.9 that these weight strutures are ompatible with ertain weight

strutures de�ned on the loalizations D/D(n) (for all n > 0). These two series
of weight strutures are de�nitely distint: note that w yields oniveau spetral

sequenes, whereas wChow yields Chow-weight spetral sequenes, that general-

ize Deligne's weight spetral sequenes for étale and mixed Hodge ohomology

(see [6℄ and [7℄). Also, the weight omplex funtor onstruted in [7℄ and [6℄

is quite distint from the one onsidered in �6.1 below (even the targets of the

funtors mentioned are ompletely distint).

The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.

Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their

interesting remarks. The author gratefully aknowledges the support from

Deligne 2004 Balzan prize in mathematis. The work is also supported by

RFBR (grants no. 08-01-00777a and 10-01-00287a).

Notation. For a ategory C, A,B ∈ ObjC, we denote by C(A,B) the set of
A-morphisms from A into B.

For ategories C,D we write C ⊂ D if C is a full subategory of D.

For additive C,D we denote by AddFun(C,D) the ategory of additive funtors
from C toD (we will ignore set-theoreti di�ulties here sine they do not a�et

our arguments seriously).

Ab is the ategory of abelian groups. For an additive B we will denote by B∗

the ategory AddFun(B,Ab) and by B∗ the ategory AddFun(Bop, Ab). Note
that both of these are abelian. Besides, Yoneda's lemma gives full embeddings

of B into B∗ and of Bop
into B∗

(these send X ∈ ObjB to X∗ = B(−, X) and
to X∗ = B(X,−), respetively).
For a ategory C, X, Y ∈ ObjC, we say that X is a retrat of Y if idX ould

be fatorized through Y . Note that when C is triangulated or abelian then

X is a retrat of Y if and only if X is its diret summand. For any D ⊂ C
the subategory D is alled Karoubi-losed in C if it ontains all retrats of

its objets in C. We will all the smallest Karoubi-losed subategory of C
ontaining D the Karoubization of D in C; sometimes we will use the same

term for the lass of objets of the Karoubization of a full subategory of C
(orresponding to some sublass of ObjC).
For a ategory C we denote by Cop

its opposite ategory.

For an additive C an objet X ∈ ObjC is alled oompat if C(
∏

i∈I Yi, X) =⊕
i∈I C(Yi, X) for any set I and any Yi ∈ ObjC suh that the produt exists

(here we don't need to demand all produts to exist, though they atually will

exist below).

For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC we

will write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we will denote

by D⊥
the lass

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Sometimes we will denote by D⊥
the orresponding full subategory of C.

Dually,

⊥D is the lass {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}. This onvention is
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opposite to the one of �9.1 of [21℄.

In this paper all omplexes will be ohomologial i.e. the degree of all di�eren-

tials is +1; respetively, we will use ohomologial notation for their terms.

For an additive ategory B we denote by C(B) the ategory of (unbounded)

omplexes over it. K(B) will denote the homotopy ategory of omplexes. If

B is also abelian, we will denote by D(B) the derived ategory of B. We will

also need ertain bounded analogues of these ategories (i.e. Cb(B), Kb(B),
D−(B)).

C and D will usually denote some triangulated ategories. We will use the

term 'exat funtor' for a funtor of triangulated ategories (i.e. for a for a

funtor that preserves the strutures of triangulated ategories).

A will usually denote some abelian ategory. We will all a ovariant additive

funtor C → A for an abelian A homologial if it onverts distinguished tri-

angles into long exat sequenes; homologial funtors Cop → A will be alled

ohomologial when onsidered as ontravariant funtors C → A.

H : Cop → A will always be additive; it will usually be ohomologial.

For f ∈ C(X,Y ), X,Y ∈ ObjC, we will all the third vertex of (any) distin-

guished triangle X
f
→ Y → Z a one of f . Note that di�erent hoies of ones

are onneted by non-unique isomorphisms, f. IV.1.7 of [13℄. Besides, in C(B)
we have anonial ones of morphisms (see setion �III.3 of ibid.).

We will often speify a distinguished triangle by two of its morphisms.

When dealing with triangulated ategories we (mostly) use onventions and

auxiliary statements of [13℄. For a set of objets Ci ∈ ObjC, i ∈ I, we will

denote by 〈Ci〉 the smallest stritly full triangulated subategory ontaining all

Ci; for D ⊂ C we will write 〈D〉 instead of 〈ObjD〉.

We will say that Ci generate C if C equals 〈Ci〉. We will say that Ci weakly

ogenerate C if for X ∈ ObjC we have C(X,Ci[j]) = {0} ∀i ∈ I, j ∈ Z =⇒
X = 0 (i.e. if

⊥{Ci[j]} ontains only zero objets).

We will all a partially ordered set L a (�ltered) projetive system if for any

x, y ∈ L there exists some maximum i.e. a z ∈ L suh that z ≥ x and z ≥ y. By
abuse of notation, we will identify L with the following ategory D: ObjD = L;
D(l′, l) is empty whenever l′ < l, and onsists of a single morphism otherwise;

the omposition of morphisms is the only one possible. If L is a projetive

system, C is some ategory, X : L → C is a ovariant funtor, we will denote

X(l) for l ∈ L by Xl. We will write Y = lim
←−l∈L

Xl for the limit of this

funtor; we will all it the inverse limit of Xl. We will denote the olimit of

a ontravariant funtor Y : L → C by lim
−→l∈L

Yl and all it the diret limit.

Besides, we will sometimes all the ategorial image of L with respet to suh

an Y an indutive system.

Below I, L will often be projetive systems; we will usually require I to be

ountable.

A subsystem L′
of L is a partially ordered subset in whih maximums exist

(we will also onsider the orresponding full subategory of L). We will all L′

unbounded in L if for any l ∈ L there exists an l′ ∈ L′
suh that l′ ≥ l.
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k will be our perfet base �eld. Below we will usually demand k to be ountable.
Note: this yields that for any variety the set of its losed (or open) subshemes

is ountable.

We also list entral de�nitions and main notation of this paper.

First we list the main (general) homologial algebra de�nitions. t-strutures, t-
trunations, and Postnikov towers in triangulated ategories are de�ned in �1.1;

weight strutures, weight deompositions, weight trunations, weight Postnikov

towers, and weight omplexes are onsidered in �2.1; virtual t-trunations and
nie exat omplexes of funtors are de�ned in �2.3; weight spetral sequenes

are studied in �2.4; (nie) dualities and orthogonal weight and t-strutures are
de�ned in De�nition 2.5.1; right and left weight-exat funtors are de�ned in

De�nition 2.7.1.

Now we list notation (and some de�nitions) for motives. DMeff
gm ⊂ DMeff

− ,

HI and the homotopy t-struture forDMeff
gm are de�ned in �1.3; Tate twists are

onsidered in �1.4; D
naive

is de�ned in �1.5; omotives (D and D
′
) are de�ned

in �3.1; in �3.2 we disuss pro-shemes and their omotives; in �3.3 we reall the

de�nition of a primitive sheme; in �4.1 we de�ne the Gersten weight struture

w on a ertain triangulated Ds; we onsider wChow in �4.7; Dbir and w′
bir are

de�ned in �4.9; several di�erential graded onstrutions (inluding extension

and restrition of salars for omotives) are onsidered in �5; we de�ne D
gen

and WC : Ds → Kb(Dgen) in �6.1.

1 Some preliminaries on triangulated categories and motives

�1.1 we reall the notion of a t-struture (and introdue some notation for it),

reall the notion of an idempotent ompletion of an additive ategory; we also

reall that any small abelian ategory ould be faithfully embedded into Ab (a
well-known result by Mithell).

In �1.2 we desribe (following H. Krause) a natural method for extending o-

homologial funtors from a full triangulated C ′ ⊂ C to C.
In �1.3 we reall some de�nitions and results of Voevodsky.

In �1.4 we reall the notion of a Tate twist; we study the properties of Tate

twists for motives and homotopy invariant sheaves.

In �1.5 we de�ne pro-motives (following [9℄ and [10℄). These are not neessary

for our main result; yet they allow to explain our methods step by step. We

also desribe in detail the relation of our onstrutions and results with those

of Deglise.

1.1 t-structures, Postnikov towers, idempotent completions, and
an embedding theorem of Mitchell

To �x the notation we reall the de�nition of a t-struture.

Definition 1.1.1. A pair of sublasses Ct≥0, Ct≤0 ⊂ ObjC for a triangulated

ategory C will be said to de�ne a t-struture t if (Ct≥0, Ct≤0) satisfy the

following onditions:
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(i) Ct≥0, Ct≤0
are strit i.e. ontain all objets of C isomorphi to their ele-

ments.

(ii) Ct≥0 ⊂ Ct≥0[1], Ct≤0[1] ⊂ Ct≤0
.

(iii) Orthogonality. Ct≤0[1] ⊥ Ct≥0
.

(iv) t-deomposition. For any X ∈ ObjC there exists a distinguished triangle

A→ X → B[−1]→A[1] (1)

suh that A ∈ Ct≤0, B ∈ Ct≥0
.

We will need some more notation for t-strutures.

Definition 1.1.2. 1. A ategory Ht whose objets are Ct=0 = Ct≥0 ∩ Ct≤0
,

Ht(X,Y ) = C(X,Y ) for X,Y ∈ Ct=0
, will be alled the heart of t. Reall (f.

Theorem 1.3.6 of [2℄) that Ht is abelian (short exat sequenes in Ht ome

from distinguished triangles in C).

2. Ct≥l
(resp. Ct≤l

) will denote Ct≥0[−l] (resp. Ct≤0[−l]).

Remark 1.1.3. 1. The axiomatis of t-strutures is self-dual: if D = Cop
(so

ObjC = ObjD) then one an de�ne the (opposite) weight struture t′ on D by

taking Dt′≤0 = Ct≥0
and Dt′≥0 = Ct≤0

; see part (iii) of Examples 1.3.2 in [2℄.

2. Reall (f. Lemma IV.4.5 in [13℄) that (1) de�nes additive funtors C →
Ct≤0 : X → A and C → Ct≥0 : X → B. We will denote A,B by Xt≤0

and

Xt≥1
, respetively.

3. (1) will be alled the t-deomposition of X. If X = Y [i] for some Y ∈ ObjC,
i ∈ Z, then we will denote A by Y t≤i

(it belongs to Ct≤0
) and B by Y t≥i+1

(it belongs to Ct≥0
), respetively. Sometimes we will denote Y t≤i[−i] by t≤iY ;

t≥i+1Y = Y t≥i+1[−i−1]. Objets of the type Y t≤i[j] and Y t≥i[j] (for i, j ∈ Z)

will be alled t-trunations of Y .

4. We denote by Xt=i
the i-th ohomology of X with respet to t i.e. (Y t≤i)t≥0

(f. part 10 of �IV.4 of [13℄).

5. The following statements are obvious (and well-known): Ct≤0 = ⊥Ct≥1
;

Ct≥0 = Ct≤−1⊥
.

Now we reall the notion of idempotent ompletion.

Definition 1.1.4. An additive ategory B is said to be idempotent omplete

if for any X ∈ ObjB and any idempotent p ∈ B(X,X) there exists a deom-

position X = Y
⊕

Z suh that p = i ◦ j, where i is the inlusion Y → Y
⊕

Z,
j is the projetion Y

⊕
Z → Y .

Reall that any additive B an be anonially idempotent ompleted. Its idem-

potent ompletion is (by de�nition) the ategory B′
whose objets are (X, p)

for X ∈ ObjB and p ∈ B(X,X) : p2 = p; we de�ne

A′((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′f = fp = f}.
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It an be easily heked that this ategory is additive and idempotent omplete,

and for any idempotent omplete C ⊃ B we have a natural full embedding

B′ → C.
The main result of [1℄ (Theorem 1.5) states that an idempotent ompletion

of a triangulated ategory C has a natural triangulation (with distinguished

triangles being all retrats of distinguished triangles of C).
Below we will need the notion of a Postnikov tower in a triangulated ategory

several times (f. �IV2 of [13℄)).

Definition 1.1.5. Let C be a triangulated ategory.

1. Let l ≤ m ∈ Z.

We will all a bounded Postnikov tower for X ∈ ObjC the following data:

a sequene of C-morphisms (0 =)Yl → Yl+1 → · · · → Ym = X along with

distinguished triangles

Yi → Yi+1 → Xi (2)

for some Xi ∈ ObjC; here l ≤ i < m.

2. An unbounded Postnikov tower for X is a olletion of Yi for i ∈ Z that

is equipped (for all i ∈ Z) with: onneting arrows Yi → Yi+1 (for i ∈ Z),

morphisms Yi → X suh that all the orresponding triangles ommute, and

distinguished triangles (2).

In both ases, we will denote X−p[p] by Xp
; we will all Xp

the fators of out

Postnikov tower.

Remark 1.1.6. 1. Composing (and shifting) arrows from triangles (2) for two

subsequent i one an onstrut a omplex whose terms are Xp
(it is easily seen

that this is a omplex indeed, f. Proposition 2.2.2 of [6℄). This observation

will be important for us below when we will onsider ertain weight omplex

funtors.

2. Certainly, a bounded Postnikov tower ould be easily ompleted to an un-

bounded one. For example, one ould take Yi = 0 for i < l, Yi = X for i > m;

then Xi = 0 if i < l or i ≥ m.

Lastly, we reall the following (well-known) result.

Proposition 1.1.7. For any small abelian ategory A there exists an exat

faithful funtor A→ Ab.

Proof. By the Freyd-Mithell's embedding theorem, any small A ould be fully

faithfully embedded into R − mod for some (assoiative unital) ring R. It

remains to apply the forgetful funtor R−mod→ Ab.

Remark 1.1.8. 1. We will need this statement below in order to assume that

objets of A 'have elements'; this will onsiderably simplify diagram hase.

Note that we an assume the existene of elements for a not neessarily small

A in the ase when a reasoning deals only with a �nite number of objets of A
at a time.

2. In the proof it su�es to have a faithful embedding A → R − mod; this
weaker assertion was also proved by Mithell.
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1.2 Extending cohomological functors from a triangulated sub-
category

We desribe a method for extending ohomologial funtors from a full trian-

gulated C ′ ⊂ C to C (after H. Krause). Note that below we will apply some of

the results of [17℄ in the dual form. The onstrution requires C ′
to be skele-

tally small i.e. there should exist a (proper) subset D ⊂ ObjC ′
suh that any

objet of C ′
is isomorphi to some element of D. For simpliity, we will some-

times (when writing sums over ObjC ′
) assume that ObjC ′

is a set itself. Sine

the distintion between small and skeletally small ategories will not a�et our

arguments and results, we will ignore it in the rest of the paper.

If A is an abelian ategory, then AddFun(C ′op, A) is abelian also; omplexes in

it are exat whenever they are exat omponentwisely.

Suppose that A satis�es AB5 i.e. it is losed with respet to all small oprod-

uts, and �ltered diret limits of exat sequenes in A are exat.

Let H ′ ∈ AddFun(C ′op, A) be an additive funtor (it will usually be ohomo-

logial).

Proposition 1.2.1. I Let A,H ′
be �xed.

1. There exists an extension of H ′
to an additive funtor H : C → A. It is

ohomologial whenever H is. The orrespondene H ′ → H de�nes an additive

funtor AddFun(C ′op, A)→ AddFun(Cop, A).

2. Moreover, suppose that in C we have a projetive system Xl, l ∈ L, equipped
with a ompatible system of morphisms X → Xl, suh that the latter system

for any Y ∈ ObjC ′
indues an isomorphism C(X,Y ) ∼= lim

−→
C(Xl, Y ). Then

we have H(X) ∼= lim
−→

H(Xl).

II Let X ∈ ObjC be �xed.

1. One an hoose a family of Xl ∈ ObjC and fl ∈ C(X,Xl) suh that (fl)
indue a surjetion ⊕H ′(Xl) → H(X) for any H ′, A, and H as in assertion

I1.

2. Let F ′ f ′

→ G′ g′

→ H ′
be a (three-term) omplex in AddFun(C ′op, A) that

is exat in the middle; suppose that H ′
is ohomologial. Then the omplex

F
f
→ G

g
→ H (here F,G,H, f, g are the orresponding extensions) is exat in

the middle also.

Proof. I1. Following �1.2 of [17℄ (and dualizing it), we onsider the abelian at-

egory C = C ′∗ = AddFun(C ′, Ab) (this is Mod C ′op
in the notation of Krause).

The de�nition easily implies that diret limits in C are exatly omponentwise

diret limits of funtors. We have the Yoneda's funtor i′ : Cop → C that sends

X ∈ ObjC to the funtor X∗ = (Y 7→ C(X,Y ), Y ∈ ObjC ′); it is obviously
ohomologial. We denote by i the restrition of i′ to C ′

(i is opposite to a full
embedding).

By Lemma 2.2 of [17℄ (applied to the ategory C ′op
) we obtain that there exists

an exat funtor G : C → A that preserves all small oproduts and satis�es

G ◦ i = H ′
. It is onstruted in the following way: if for X ∈ ObjC we have an
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exat sequene (in C)

⊕j∈J X∗
j → ⊕l∈LX

∗
l → X∗ → 0 (3)

for Xj , Xl ∈ C ′
, then we set

G(X) = Coker⊕j∈JH
′(Xj)→ ⊕l∈LH

′(Xl). (4)

We de�ne H = G ◦ i′; it was proved in lo.it. that we obtain a well-de�ned

funtor this way. As was also proved in lo.it., the orrespondene H ′ 7→ H
yields a funtor; H is ohomologial if H ′

is.

2. The proof of lo.it. shows (and mentions) that G respets (small) �ltered

inverse limits. Now note that our assertions imply: X∗ = lim
−→

X∗
l in C.

II 1. This is immediate from (4).

2. Note that the assertion is obviously valid if X ∈ ObjC ′
. We redue the

general statement to this ase.

Applying Yoneda's lemma to (3) is we obtain (anonially) some morphisms

fl : X → Xl for all l ∈ L and glj : Xl → Xj for all l ∈ L, j ∈ J , suh that: for

any l ∈ L almost all glj are 0; for any j ∈ J almost all glj is 0; for any j ∈ J
we have

∑
l∈L glj ◦ fl = 0.

Now, by Proposition 1.1.7, we may assume that A = Ab (see Remark 1.1.8).

We should hek: if for a ∈ G(X) we have g∗(a) = 0, then a = f∗(b) for some

b ∈ F (X).
Using additivity of C ′

and C, we an gather �nite sets of Xl and Xj into single

objets. Hene we an assume that a = G(fl0)(c) for some c ∈ G(Xl) (=
G′(Xl)), l0 ∈ L and that g∗(c) ∈ H(gl0j0)(H(Xj0)) for some j0 ∈ J , whereas

gl0j0 ◦ fl0 = 0. We omplete Xl0 → Xj0 to a distinguished triangle Y
α
→

Xl0

gl0j0→ Xj0 ; we an assume that B ∈ ObjC ′
. We obtain that fl0 ould be

presented as α ◦β for some β ∈ C(X,Y ). Sine H ′
is ohomologial, we obtain

that H(α)(g∗(c)) = 0. Sine Y ∈ ObjC, the omplex F (Y ) → G(Y ) → H(Y )
is exat in the middle; hene G(α)(c) = f∗(d) for some d ∈ F (Y ). Then we

an take b = F (β)(d).

1.3 Some definitions of Voevodsky: reminder

We use muh notation from [25℄. We reall (some of) it here for the onveniene

of the reader, and introdue some notation of our own.

V ar ⊃ SmV ar ⊃ SmPrV ar will denote the lass of all varieties over k, resp.
of smooth varieties, resp. of smooth projetive varieties.

We reall that for ategories of geometri origin (in partiular, for SmCor de-

�ned below) the addition of objets is de�ned via the disjoint union of varieties

operation.

We de�ne the ategory SmCor of smooth orrespondenes. ObjSmCor =
SmV ar, SmCor(X,Y ) =

⊕
U Z for all integral losed U ⊂ X × Y that are

�nite over X and dominant over a onneted omponent of X; the omposition
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of orrespondenes is de�ned in the usual way via intersetions (yet, we do not

need to onsider orrespondenes up to an equivalene relation).

We will write · · · → Xi−1 → Xi → Xi+1 → . . . , for X l ∈ SmV ar, for the
orresponding omplex over SmCor.

PreShv(SmCor) will denote the (abelian) ategory of additive ofuntors

SmCor → Ab; its objets are usually alled presheaves with transfers.

Shv(SmCor) = Shv(SmCor)Nis ⊂ PreShv(SmCor) is the abelian ategory

of additive ofuntors SmCor → Ab that are sheaves in the Nisnevih topology

(when restrited to the ategory of smooth varieties); these sheaves are usually

alled sheaves with transfers.

D−(Shv(SmCor)) will be the bounded above derived ategory of

Shv(SmCor).

For Y ∈ SmV ar (more generally, for Y ∈ V ar, see �4.1 of [25℄) we onsider

L(Y ) = SmCor(−, Y ) ∈ Shv(SmCor). For a bounded omplex X = (Xi)
(as above) we will denote by L(X) the omplex · · · → L(Xi−1) → L(Xi) →
L(Xi+1)→ · · · ∈ Cb(Shv(SmCor)).

S ∈ Shv(SmCor) is alled homotopy invariant if for any X ∈ SmV ar the

projetion A
1 × X → X gives an isomorphism S(X) → S(A1 × X). We will

denote the ategory of homotopy invariant sheaves (with transfers) by HI; it
is an exat abelian subategory of SmCor by Proposition 3.1.13 of [25℄.

DMeff
− ⊂ D−(Shv(SmCor)) is the full subategory of omplexes whose oho-

mology sheaves are homotopy invariant; it is triangulated by lo.it. We will

need the homotopy t-struture on DMeff
− : it is the restrition of the anon-

ial t-struture on D−(Shv(SmCor)) to DMeff
− . Below (when dealing with

DMeff
− ) we will denote it by just by t. We have Ht = HI.

We reall the following results of [25℄.

Proposition 1.3.1. 1. There exists an exat funtor RC :
D−(Shv(SmCor)) → DMeff

− right adjoint to the embedding DMeff
− →

D−(Shv(SmCor)).

2. DMeff
− (Mgm(Y )[−i], F ) = H

i(F )(Y ) (the i-th Nisnevih hyperohomology

of F omputed in Y ) for any Y ∈ SmV ar.

3. Denote RC ◦ L by Mgm. Then the orresponding funtor Kb(SmCor) →

DMeff
− ould be desribed as a ertain loalization of Kb(SmCor).

Proof. See �3 of [25℄.

Remark 1.3.2. 1. In [25℄ (De�nition 2.1.1) the triangulated ategory DMeff
gm

(of e�etive geometri motives) was de�ned as the idempotent ompletion of a

ertain loalization of Kb(SmCor). This de�nition is ompatible with a di�er-

ential graded enhanement for DMeff
gm ; f. �5.3 below. Yet in Theorem 3.2.6 of

[25℄ it was shown that DMeff
gm is isomorphi to the idempotent ompletion of

(the ategorial image) Mgm(Cb(SmCor)); this desription of DMeff
gm will be

su�ient for us till �5.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 49

2. In fat, RC ould be desribed in terms of so-alled Suslin omplexes (see

lo.it.). We will not need this below. Instead, we will just note that RC sends

D−(Shv(SmCor))t≤0
to DMeff

−
t≤0

.

1.4 Some properties of Tate twists

Tate twisting in DMeff
− ⊃ DMeff

gm is given by tensoring by the objet Z(1)
(it is often denoted just by −(1)). Tate twist has several desriptions and nie

properties. We will only need a few of them; our main soure is �3.2 of [25℄; a

more detailed exposition ould be found in [20℄ (see ��8�9).

In order to alulate the tensor produt of X,Y ∈ ObjDMeff
− one should take

any preimages X ′, Y ′
of X,Y in ObjD−(Shv(SmCor)) with respet to RC (for

example, one ould take X ′ = X, Y ′ = Y ); next one should resolve X,Y by

diret sums of L(Zi) for Zi ∈ SmV ar; lastly one should tensor these resolutions
using the identity L(Z)⊗L(T ) = L(Z×T ) for Z, T ∈ SmV ar, and apply RC to

the result. This tensor produt is ompatible with the natural tensor produt

for Kb(SmCor).

We note that any objet D−(Shv(SmCor))
t≤0

has a resolution onentrated

in negative degrees (the anonial resolution of the beginning of �3.2 of [25℄).

It follows that DMeff
−

t≤0 ⊗DMeff
−

t≤0 ⊂ DMeff
−

t≤0
(see Remark 1.3.2(2); in

fat, there is an equality sine Z ∈ ObjHI).
Next, we denote A

1 \ {0} by Gm. The morphisms pt→ Gm → pt (the point is
mapped to 1 in Gm) indue a splitting Mgm(Gm) = Z ⊕ Z(1)[1] for a ertain

(Tate) motif Z(1); see De�nition 3.1 of [20℄. For X ∈ ObjDMeff
− we denote

X ⊗ Z(1) by X(1).
One ould also present Z(1) as Cone(pt → Gm)[−1]; hene the Tate twist

funtor X 7→ X(1) is ompatible with the funtor − ⊗ (Cone(pt → Gm)[−1])

on Cb(SmCor) via Mgm. We also obtain that DMeff
−

t≤0(1) ⊂ DMeff
−

t≤1
.

Now we de�ne ertain twists for funtors.

Definition 1.4.1. For an G ∈ AddFun(DMeff
gm , Ab), n ≥ 0, we de�ne

G−n(X) = G(X(n)[n]).

Note that this de�nition is ompatible with those of �3.1 of [26℄. Indeed, for

X ∈ SmV ar we have G−1(Mgm(X)) = G(Mgm(X × Gm))/G(Mgm(X)) =
Ker(G(Mgm(X × Gm)) → G(Mgm(X))) (with respet to natural morphisms

X × pt→ X ×Gm → X × pt); G−n for larger n ould be de�ned by iterating

−−1.

Below we will extend this de�nition to (o)motives of pro-shemes.

For F ∈ ObjDMeff
− we will denote by F∗ the funtor X 7→ DMeff

− (X,F ) :
DMeff

gm → Ab.

Proposition 1.4.2. Let X ∈ SmV ar, n ≥ 0, i ∈ Z.

1. For any F ∈ ObjDMeff
− we have: F∗−n(Mgm(X)[−i]) is a retrat of

H
i(F )(X ×G×n

m ) (whih an be desribed expliitly).
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2. There exists a t-exat funtor Tn : DMeff
− → DMeff

− suh that for any

F ∈ ObjDMeff
− we have F∗−n

∼= (Tn(F ))∗.

Proof. 1. Proposition 1.3.1 along with our desription of Z(1) yields the result.
2. For F represented by a omplex of F i ∈ ObjShv(SmCor) (i ∈ Z) we

de�ne Tn(F ) as the omplex of Tn(F
i), where Tn : PreShv(SmCor) →

PreShv(SmCor) is de�ned similarly to −−n in De�nition 1.4.1. Tn(F
i) are

sheaves sine Tn(Fi)(X), X ∈ SmV ar, is a funtorial retrat of Fi(X ×Gn
m).

In order to hek that we atually obtain a well-de�ned a t-exat funtor this
way, it su�es to note that the restrition of Tn to Shv(SmCor) is an exat

funtor by Proposition 3.4.3 of [9℄.

Now, it su�es to hek that Tn de�ned satis�es the assertion for n = 1. In this
ase the statement follows easily from Proposition 4.34 of [26℄ (note that it is

not important whether we onsider Zariski or Nisnevih topology by Theorem

5.7 of ibid.).

1.5 Pro-motives vs. comotives; the description of our strategy

Below we will embed DMeff
gm into a ertain triangulated ategory D of omo-

tives. Its onstrution (and omputations in it) is rather ompliated; in fat,

the author is not sure whether the main properties of D (desribed below)

speify it up to an isomorphism. So, before working with o-motives we will

(following F. Deglise) desribe a simpler ategory of pro-motives. The latter

is not needed for our main results (so the reader may skip this subsetion);

yet the omparison of the ategories mentioned would larify the nature of our

methods.

Following �3.1 of [9℄, we de�ne the ategory D
naive

as the additive ategory

of naive i.e. formal (�ltered) pro-objets of DMeff
gm . This means that for any

X : L→ DMeff
gm , Y : J → DMeff

gm we de�ne

D
naive(lim

←−l∈L
Xl, lim←−j∈J

Yj) = lim
←−j∈J

(lim
−→l∈L

DMeff
gm (Xl, Yj)). (5)

The main disadvantage ofD
naive

is that it is not triangulated. Still, one has the

obvious shift for it; following Deglise, one an de�ne pro-distinguished triangles

as (�ltered) inverse limits of distinguished triangles in DMeff
gm . This allows to

onstrut a ertain motivi oniveau exat ouple for a motif of a smooth variety

in �4.2 of [10℄ (see also �5.3 of [9℄). This onstrution is parallel to the lassial

onstrution of oniveau spetral sequenes (see �1 of [8℄). One starts with

ertain 'geometri' Postnikov towers in DMeff
gm (Deglise alls them triangulated

exat ouples). For Z ∈ SmV ar we onsider �ltrations ∅ = Zd+1 ⊂ Zd ⊂
Zd−1 ⊂ · · · ⊂ Z0 = Z; Zi is everywhere of odimension ≥ i in Z for all i.
Then we have a system of distinguished triangles relating Mgm(Z \ Zi) and

Mgm(Z \ Zi → Z \ Zi+1); this yields a Postnikov tower. Then one passes

to the inverse limit of these towers in D
naive

(here the onneting morphisms
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are indued by the orresponding open embeddings). Lastly, the funtorial

form of the Gysin distinguished triangle for motives allows Deglise to identify

Xi = lim
←−

(Mgm(Z \ Zi → Z \ Zi+1)) with the produt of shifted Tate twists of

pro-motives of all points of Z of odimension i. Using the results of see �5.2

of [9℄ (the relation of pro-motives with yle modules of M. Rost, see [24℄) one

an also ompute the morphisms that onnet Xi
with Xi+1

.

Next, for any ohomologial H : DMeff
gm → A, where A is an abelian ategory

satisfying AB5, one an extend H to D
naive

via the orresponding diret limits.

ApplyingH to the motivi oniveau exat ouple one gets the lassial oniveau

spetral sequene (that onverges to the H-ohomology of Z). This allows

to extend the seminal results of �6 of [5℄ to a omprehensive desription of

the oniveau spetral sequene in the ase when H is represented by Y ∈
ObjDMeff

− (in terms of the homotopy t-trunations of Y ; see Theorem 6.4 of

[11℄).

Now suppose that one wants to apply a similar proedure for an arbitrary

X ∈ ObjDMeff
gm ; say, X = Mgm(Z1 f

→ Z2) for Z1, Z2 ∈ SmV ar, f ∈
SmCor(Z1, Z2). One would expet that the desired exat ouple for X ould

be onstruted from those for Zj
, j = 1, 2. This is indeed the ase when f satis-

�es ertain odimension restritions; f. �7.4 of [6℄. Yet for a general f it seems

to be quite di�ult to relate the �ltrations of distint Zj
(by the orresponding

Zj
i ). On the other hand, the formalism of weight strutures and weight spe-

tral sequenes (developed in [6℄) allows to 'glue' ertain weight Postnikov towers

for objets of a triangulated ategories equipped with a weight struture; see

Remark 4.1.2(3) below.

So, we onstrut a ertain triangulated ategory D that is somewhat similar

to D
naive

. Certainly, we want distinguished triangles in D to be ompatible

with inverse limits that ome from 'geometry'. A well-known reipe for this is:

one should onsider some ategory D
′
where (ertain) ones of morphisms are

funtorial and pass to (inverse) limits in D
′
; D should be a loalization of D

′
.

In fat, D
′
onstruted in �5.3 below ould be endowed with a ertain (Quillen)

model struture suh that D is its homotopy ategory. We will never use this

fat below; yet we will sometimes all inverse limits oming from D
′
homotopy

limits (in D).

Now, in Proposition 4.3.1 below we will prove that ohomologial funtors

H : DMeff
gm → A ould be extended to D in a way that is ompatible with

homotopy limits (those oming from D
′
). So one may say that objets of D

have the same ohomology as those of D
naive

. On the other hand, we have

to pay the prie for D being triangulated: (5) does not ompute morphisms

between homotopy limits in D. The 'di�erene' ould be desribed in terms

of ertain higher projetive limits (of the orresponding morphism groups in

DMeff
gm ).

Unfortunately, the author does not know how to ontrol the orresponding

lim
←−

2
(and higher ones) in the general ase; this does not allow to onstrut

a weight struture on a su�iently large triangulated subategory of D if k
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is unountable (yet see �6.5, espeially the last paragraph of it). In the ase

of a ountable k only lim
←−

1
is non-zero. In this ase the morphisms between

homotopy limits in D are expressed by the formula (28) below. This allows

to prove that there are no morphisms of positive degrees between ertain Tate

twists of omotives of funtion �elds (over k). This immediately yields that one

an onstrut a ertain weight struture on the triangulated subategory Ds of

D generated by produts of Tate twists of omotives of funtion �elds (in fat,

we also idempotent omplete Ds). Now, in order to prove that Ds ontains

DMeff
gm it su�es to prove that the motif of any smooth variety X belongs

to Ds. To this end it learly su�es to deompose Mgm(X) into a Postnikov

tower whose fators are produts of Tate twists of omotives of funtion �elds.

So, we lift the motivi oniveau exat ouple (onstruted in [10℄) from D
naive

to D. Sine ones in D
′
are ompatible with inverse limits, we an onstrut a

tower whose terms are the homotopy limits of the orresponding terms of the

geometri towers mentioned. In fat, this ould be done for an unountable k
also; the di�ulty is to identify the analogues of Xi in D. If k is ountable,

the homotopy limits orresponding to our tower are ountable also. Hene (by

an easy well-known result) the isomorphism lasses of these homotopy limits

ould be omputed in terms of the orresponding objets and morphisms in

DMeff
gm . This means: it su�es to ompute Xi

in D
naive

(as was done in [10℄);

this yields the result needed. Note that we annot (ompletely) ompute the

D-morphisms Xi → Xi+1
; yet we know how they at on ohomology.

The most interesting appliation of the results desribed is the following one.

We prove that there are no positive D-morphisms between (ertain) Tate twists

of omotives of smooth semi-loal shemes (or primitive shemes, see below);

this generalizes the orresponding result for funtion �elds. It follows that

these twists belong to the heart of the weight struture on Ds mentioned.

Therefore omotives of (onneted) primitive shemes are retrats of omotives

of their generi points. Hene the same is true for the ohomology of the

omotives mentioned and also for the orresponding pro-motives. Also, the

omotif of a funtion �eld ontains as retrats twisted omotives of its residue

�elds (for all geometri valuations); this also implies the orresponding results

for ohomology and pro-motives.

Remark 1.5.1. In fat, Deglise mostly onsiders pro-objets for Voevodsky's

DMgm and of DMeff
− ; yet the distintions are not important sine the full

embeddings DMeff
gm → DMgm and DMeff

gm → DMeff
− obviously extend to full

embedding of the orresponding ategories of pro-objets. Still, the embeddings

mentioned allow Deglise to extend several nie results for Voevodsky's motives

to pro-motives.

2. One of the advantages of the results of Deglise is that he never requires k to

be ountable. Besides, our onstrution of weight Postnikov towers mentioned

heavily relies on the funtoriality of the Gysin distinguished triangle for motives

(proved in [10℄; see also Proposition 2.4.5 of [9℄).

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 53

2 Weight structures: reminder, truncations, weight spectral se-
quences, and duality with t-structures

In �2.1 we reall basi de�nitions of the theory of weight strutures (it was

developed in [6℄; the onept was also independently introdued in [23℄). Note

here that weight strutures (usually denoted by w) are natural ounterparts of t-
strutures. Weight strutures yield weight trunations; those (vastly) generalize

stupid trunations in K(B): in partiular, they are not anonial, yet any

morphism of objets ould be extended (non-anonially) to a morphism of

their weight trunations. We reall several properties of weight strutures in

�2.2.

We reall virtual t-trunations for a (ohomologial) funtor H : C → A (for C
endowed with a weight struture) in �2.3 (these trunations are de�ned in terms

of weight trunations). Virtual t-trunations were introdued in �2.5 of [6℄;

they yield a way to present H (anonially) as an extension of a ohomologial

funtor that is positive in a ertain sense by a 'negative' one (as if H belonged

to some triangulated ategory of funtors C → A endowed with a t-struture).
We study this notion further here, and prove that virtual t-trunations for a
ohomologial H ould be haraterized up to a unique isomorphism by their

properties (see Theorem 2.3.1(III4)). In order to give some haraterization

also for the 'dimension shift' (onneting the positive and the negative virtual

t-trunations of H), we introdue the notion of a nie (strongly exat) omplex

of funtors. We prove that omplexes of representable funtors oming from

distinguished triangles in C are nie, as well as those omplexes that ould be

obtained from nie strongly exat omplexes of funtors C ′ → A for some small

triangulated C ′ ⊂ C (via the extension proedure given by Proposition 1.2.1).

In �2.4 we onsider weight spetral sequenes (introdued in ��2.3�2.4 of [6℄).

We prove that the derived exat ouple for the weight spetral sequene T (H)
(for H : C → A) ould be naturally desribed in terms of virtual t-trunations
of H. So, one an express T (H) starting from E2 (as well as the orresponding

�ltration of H∗
) in these terms also. This is an important result, sine the basi

de�nition of T (H) is given in terms of weight Postnikov towers for objets of C,
whereas the latter are not anonial. In partiular, this result yields anonial

funtorial spetral sequenes in lassial situations (onsidered by Deligne; f.

Remark 2.4.3 of [6℄; note that we do not need rational oe�ients here).

In �2.5 we introdue the de�nition a (nie) duality Φ : Cop × D → A, and
of (left) orthogonal weight and t-strutures (with respet to Φ). The latter

de�nition generalizes the notion of adjaent strutures introdued in �4.4 of

[6℄ (this is the ase C = D, A = Ab, Φ = C(−, )). If w is orthogonal to

t then the virtual t-trunations (orresponding to w) of funtors of the type

Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via Φ' by the atual

t-trunations of Y (orresponding to t). We also prove that (nie) dualities

ould be extended from C ′
to C (using Proposition 1.2.1). Note here that

(to the knowledge of the author) this paper is the �rst one whih onsiders

'pairings' of triangulated ategories.
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In �2.6 we prove: if w and t are orthogonal with respet to a nie duality, the

weight spetral sequene onverging to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is

naturally isomorphi (starting from E2) to the one oming from t-trunations

of Y . Moreover even when the duality is not nie, all Epq
r for r ≥ 2 and the

�ltrations orresponding to these spetral sequenes are still anonially iso-

morphi. Here nieness of a duality (de�ned in �2.5) is a somewhat tehnial

ondition (de�ned in terms of nie omplexes of funtors). Nieness gener-

alizes to pairings (C × D → A) the axiom TR3 (of triangulated ategories:

any ommutative square in C ould be ompleted to a morphism of distin-

guished triangles; note that this axiom ould be desribed in terms of the fun-

tor C(−,−) : C×C → Ab). We also disuss some alternatives and predeessors

of our methods and results.

In �2.7 we ompare weight deompositions, virtual t-trunations, and weight

spetral sequenes orresponding to distint weight strutures (in possibly dis-

tint triangulated ategories, onneted by an exat funtor).

2.1 Weight structures: basic definitions

We reall the de�nition of a weight struture (see [6℄; in [23℄ D. Pauksztello

introdued weight strutures independently and alled them o-t-strutures).

Definition 2.1.1 (De�nition of a weight struture). A pair of sublasses

Cw≤0, Cw≥0 ⊂ ObjC for a triangulated ategory C will be said to de�ne a

weight struture w for C if they satisfy the following onditions:

(i) Cw≥0, Cw≤0
are additive and Karoubi-losed (i.e. ontain all retrats of

their objets that belong to ObjC).

(ii) "Semi-invariane" with respet to translations.

Cw≥0 ⊂ Cw≥0[1]; Cw≤0[1] ⊂ Cw≤0
.

(iii) Orthogonality.

Cw≥0 ⊥ Cw≤0[1].
(iv) Weight deomposition.

For any X ∈ ObjC there exists a distinguished triangle

B[−1]→ X → A
f
→ B (6)

suh that A ∈ Cw≤0, B ∈ Cw≥0
.

A simple example of a ategory with a weight struture is K(B) for any addi-

tive B: positive objets are omplexes that are homotopy equivalent to those

onentrated in positive degrees; negative objets are omplexes that are homo-

topy equivalent to those onentrated in negative degrees. Here one ould also

onsider the subategories of omplexes that are bounded from above, below,

or from both sides.

The triangle (6) will be alled a weight deomposition of X. A weight de-

omposition is (almost) never unique; still we will sometimes denote any pair

(A,B) as in (6) by Xw≤0
and Xw≥1

. Besides, we will all objets of the type
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(X[i])w≤0[j] and (X[i])w≥0[j] (for i, j ∈ Z) weight trunations of X. A shift of

the distinguished triangle (6) by [i] for any i ∈ Z, X ∈ ObjC (as well as any

its rotation) will sometimes be alled a shifted weight deomposition.

In K(B) (shifted) weight deompositions ome from stupid trunations of om-

plexes.

We will also need the following de�nitions and notation.

Definition 2.1.2. Let X ∈ ObjC.

1. The ategory Hw ⊂ C whose objets are Cw=0 = Cw≥0 ∩ Cw≤0
,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0
, will be alled the heart of the

weight struture w.

2. Cw≥l
(resp. Cw≤l

, resp. Cw=l
) will denote Cw≥0[−l] (resp. Cw≤0[−l],

resp. Cw=0[−l]).

3. We denote Cw≥l ∩ Cw≤i
by C [l,i]

.

4. Xw≤l
(resp. Xw≥l

) will denote (X[l])w≤0
(resp. (X[l − 1])w≥1

).

5. w≤iX (resp. w≥iX) will denote Xw≤i[−i] (resp. Xw≥i[−i]).

6. w will be alled non-degenerate if

∩lC
w≥l = ∩lC

w≤l = {0}.

7. We onsider Cb = (∪i∈ZC
w≤i) ∩ (∪i∈ZC

w≥i) and all it the lass of

bounded objets of C.

For X ∈ Cb
we will usually take w≤iX = 0 for i small enough, w≥iX = 0

for i large enough.

We will also denote by Cb
the orresponding full subategory of C.

8. We will say that (C,w) is bounded if Cb = C.

9. We will all a Postnikov tower for X (see De�nition 1.1.5) a weight Post-

nikov tower if all Yi are some hoies for w≥1−iX. In this ase we will all

the omplex whose terms are Xp
(see Remark 1.1.6) a weight omplex for

X.

We will all a weight Postnikov tower for X negative if X ∈ Cw≤0
and

we hoose w≥jX to be 0 for all j > 0 here.

10. D ⊂ ObjC will be alled extension-stable if for any distinguished triangle

A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.

We will also say that the orresponding full subategory is extension-

stable.

11. D ⊂ ObjC will be alled negative if for any i > 0 we have D ⊥ D[i].
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Remark 2.1.3. 1. One ould also dualize our de�nition of a weight Postnikov

tower i.e. build a tower from w≤lX instead of w≥lX. Our de�nition of a

weight Postnikov tower is more onvenient for our purposes sine in �3.6 below

we will onsider Yi = j(Z0 \ Zi) instead of = j(Z0 \ Zi → Z0)[−1]. Yet this

does not make muh di�erene; see �1.5 of [6℄ and Theorem 2.2.1(12) below. In

partiular, our de�nition of the weight omplex for X oinides with De�nition

2.2.1 of ibid. Note also, that De�nition 1.5.8 of ibid (of a weight Postnikov

tower) ontained both 'our' part of the data and the dual part.

2. Weight Postnikov towers for objets of C are far from being unique; their

morphisms (provided by Theorem 2.2.1(15) below) are not unique also (f.

Remark 1.5.9 of [6℄). Yet the orresponding weight spetral sequenes for o-

homology are unique and funtorial starting from E2; see Theorem 2.4.2 of ibid.

and Theorem 2.4.2 below for more detail. In partiular, all possible hoies of

a weight omplex for X are homotopy equivalent (see Theorem 3.2.2(II) and

Remark 3.1.7(3) in [6℄).

2.2 Basic properties of weight structures

Now we list some basi properties of notions de�ned. In the theorem below

we will assume that C is endowed with a �xed weight struture w everywhere

exept in assertions 18 � 20.

Theorem 2.2.1. 1. The axiomatis of weight strutures is self-dual: if

D = Cop
(so ObjC = ObjD) then one an de�ne the (opposite) weight

struture w′
on D by taking Dw′≤0 = Cw≥0

and Dw′≥0 = Cw≤0
.

2. We have

Cw≤0 = Cw≥1⊥
(7)

and

Cw≥0 = ⊥Cw≤−1. (8)

3. For any i ∈ Z, X ∈ ObjC we have a distinguished triangle w≥i+1X →
X → w≤iX (given by a shifted weight deomposition).

4. Cw≤0
, Cw≥0

, and Cw=0
are extension-stable.

5. All Cw≤i
are losed with respet to arbitrary (small) diret produts

(those, whih exist in C); all Cw≥i
and Cw=i

are additive.

6. For any weight deomposition of X ∈ Cw≥0
(see (6)) we have A ∈ Cw=0

.

7. If A→ B → C → A[1] is a distinguished triangle and A,C ∈ Cw=0
, then

B ∼= A⊕ C.

8. If we have a distinguished triangle A → B → C for B ∈ Cw=0
, C ∈

Cw≤−1
then A ∼= B

⊕
C[−1].
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9. If X ∈ Cw=0
, X[−1] → A

f
→ B is a weight deomposition (of X[−1]),

then B ∈ Cw=0
; B ∼= A⊕X.

10. Let l ≤ m ∈ Z, X,X ′ ∈ ObjC; let weight deompositions of X[m] and
X ′[l] be �xed. Then any morphism g : X → X ′

an be ompleted to a

morphism of distinguished triangles

w≥m+1X −−−−→ X
c

−−−−→ w≤mX




y

a





y

g





y

b

w≥l+1X
′ −−−−→ X ′ d

−−−−→ w≤lX
′

(9)

This ompletion is unique if l < m.

11. Consider some ompletion of a ommutative triangle w≥m+1X →
w≥l+1X → X (that is uniquely determined by the morphisms w≥m+1X →
X and w≥l+1X → X oming from the orresponding shifted weight de-

ompositions; see the previous assertion) to an otahedral diagram:

w≤lX

[1]

&&▼▼
▼▼

▼▼
▼▼

▼▼

[1]

��

Xoo

w≥l+1X

88rrrrrrrrrrr

xxqqq
qq
qq
qq
q

w[l+1,m]X
[1] // w≥m+1X

ff▲▲▲▲▲▲▲▲▲▲

OO

w≤lX

[1]

��

X

yyrrr
rr
rr
rr
rr

oo

w≤mX

ff▲▲▲▲▲▲▲▲▲▲

[1]

%%❑❑
❑❑

❑❑
❑❑

❑❑

w[l+1,m]X

99rrrrrrrrrr [1] // w≥m+1X

OO

Then w[l+1,m]X ∈ C [l+1,m]
; all the distinguished triangles of this otahe-

dron are shifted weight deompositions.

12. For X,X ′ ∈ ObjC, l, l′,m,m′ ∈ Z, l < m, l′ < m′
, l > l′, m > m′

, on-

sider two otahedral diagrams: (11) and a similar one orresponding to

the ommutative triangle w≥m+1X → w≥l+1X → X and w≥m′+1X
′ →

w≥l′+1X → X (i.e. we �x some hoies of these diagrams). Then any

g ∈ C(X,X ′) ould be uniquely extended to a morphism of these dia-

grams. The orresponding morphism h : w[l+1,m]X → w[l′+1,m′]X
′
is

haraterized uniquely by any of the following onditions:
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(i) there exists a C-morphism i that makes the squares

w≥l+1X −−−−→ X




y

i





y

g

w≥l′+1X
′ −−−−→ X ′

(10)

and

w≥l+1X −−−−→ w[l+1,m]X




y

i





y

h

w≥l′+1X
′ −−−−→ w[l′+1,m′]X

′

(11)

ommutative.

(ii) there exists a C-morphism j that makes the squares

X −−−−→ w≤mX




y

g





y

j

X ′ −−−−→ w≤m′X ′

(12)

and

w[l+1,m]X −−−−→ w≤mX




y

h





y

j

w[l′+1,m′]X
′ −−−−→ w≤m′X ′

(13)

ommutative.

13. For any hoie of w≥iX there exists a weight Postnikov tower for X (see

De�nition 2.1.2(9)). For any weight Postnikov tower we have Cone(Yi →
X) ∈ Cw≤−i

; Xi ∈ Cw=0
.

14. Conversely, any bounded Postnikov tower (for X) with Xi ∈ Cw=0
is a

weight Postnikov tower for it.

15. For X,X ′ ∈ ObjC and arbitrary weight Postnikov towers for them, any

g ∈ C(X,X ′) an be extended to a morphism of Postnikov towers (i.e.

there exist morphisms Yi → Y ′
i , Xi → X ′i

, suh that the orresponding

squares ommute).

16. For X,X ′ ∈ Cw≤0
, suppose that f ∈ C(X,X ′) an be extended to a

morphism of (some of) their negative Postnikov towers that establishes

an isomorphism X0 → X ′0
. Suppose also that X ′ ∈ Cw=0

. Then f yields

a projetion of X onto X ′
(i.e. X ′

is a retrat of X via f).

17. Cb
is a Karoubi-losed triangulated subategory of C. w indues a non-

degenerate weight struture for it, whose heart equals Hw.
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18. For a triangulated idempotent omplete C let D ⊂ ObjC be negative.

Then there exists a unique weight struture w on the Karoubization T
of 〈D〉 in C suh that D ⊂ Tw=0

. Its heart is the Karoubization of the

losure of D in C with respet to (�nite) diret sums.

19. For the weight struture mentioned in the previous assertion, Tw≤0
is the

Karoubization of the smallest extension-stable sublass of ObjC ontain-

ing ∪i≥0D[i]; Tw≥0
is the Karoubization of the smallest extension-stable

sublass of ObjC ontaining ∪i≤0D[i].

20. For the weight struture mentioned in two previous assertions we also

have

Tw≤0 = (∪i<0D[i])⊥; Tw≥0 = ⊥(∪i>0D[i]).

Proof. 1. Obvious; f. Remark 1.1.3 of [6℄ (and Remark 1.1.2 of ibid. for

more detail).

2. These are parts 1 and 2 of Proposition 1.3.3 of ibid.

3. Obvious (sine [i] is exat up to hange of signs of morphisms); f. Remark

1.2.2 of ibid.

4. This is part 3 of Proposition 1.3.3 of ibid.

5. Obvious from the de�nition and parts 4 of lo.it.

6. This is part 6 of Proposition 1.3.3 of ibid.

7. This is part 7 of lo.it.

8. It su�es to note that C(B,C) = 0, hene the triangle splits.

9. This is part 8 of lo.it.

10. This is Lemma 1.5.1 of ibid.

11. The only non-trivial statement here is that w[l+1,m]X ∈ C [l+1,m]
(it

easily implies: the left hand side of the lower ap in (11) also yields

a shifted weight deomposition). (11) yields distinguished triangles:

T1 = (w≥l+1X → w[l+1,m]X → w≥m+1X[1]) and T2 = (w≤lX →
w[l+1,m]X[1]→ w≤mX[1]). Hene assertion 4 yields the result.

12. By assertion 10, g extends uniquely to a morphism of the following dis-

tinguished triangles: from T3 = (w≥m+1X → X → w≤mX) to T ′
3 =

(w≥m′+1X
′ → X ′ → w≤m′X), and from T4 = (w≥l+1X → X → w≤lX)

to T ′
4 = (w≥l′+1X

′ → X ′ → w≤l′X); next we also obtain a unique mor-

phism from T1 (as de�ned in the proof of the previous assertion) to its

analogue T ′
1. Putting all of this together: we obtain unique morphisms

of all of the verties of our otahedra, whih are ompatible with all

the edges of the otahedra expet (possibly) those that belong to T2 (as
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de�ned above). We also obtain that there exists unique i and h that

omplete (10) and (11) to ommutative squares.

Now, the morphism w≤lX → w[l+1,m]X ould be deomposed into the

omposition of morphisms belonging to T1 and T3. Hene in order to ver-

ify that we have atually onstruted a morphism of otahedral diagrams,

it remains to verify the ommutativity of the squares

w≤mX −−−−→ w≤lX




y

g





y

j

w≤m′X ′ −−−−→ w≤l′X
′

(14)

and (13) i.e. we should hek that the two possible ompositions of ar-

rows for eah of the squares are equal. Now, assertion 10 implies: the

ompositions in question for (14) both equal the only morphism q that

makes the square

X −−−−→ w≤mX




y

g





y

q

X ′ −−−−→ w≤l′X
′

ommutative. Similarly, the ompositions for (13) both equal the only

morphism r that makes the square

w≥l+1X −−−−→ w[l+1,m]X




y





y

r

X ′ −−−−→ w≤m′X ′

ommutative. Here we use the part of the otahedral axiom that says

that the square

w≥l+1X −−−−→ w[l+1,m]X




y





y

X −−−−→ w≤mX

is ommutative (as well as the orresponding square for (X ′, l′,m′)).

Lastly, as we have already noted, the ondition (i) haraterizes h
uniquely; for similar (atually, exatly dual) reasons the same is true

for (ii). Sine the morphism w[l+1,m]X → w[l′+1,m′]X
′
oming from the

morphism of the otahedra onstruted satis�es both of these onditions,

it is haraterized by any of them uniquely.

13. Immediate from part 2 of (Proposition 1.5.6) of lo.it (and also from

assertion 11).

14. Immediate from Remark 1.5.9(2) of ibid.
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15. Immediate from part 1 (of Remark 1.5.9) of lo.it.

16. It su�es to prove that Cone f ∈ Cw≤−1
. Indeed, then the distinguished

triangle X
f
→ X ′ → Cone f neessarily splits.

We omplete the ommutative triangle Xw≤−1 → X ′w≤−1 → X0(= X ′0)
to an otahedral diagram. Then we obtain Cone f ∼= Cone(Xw≤−1 →
X ′w≤−1)[1]; hene Cone f ∈ Cw≤−1

indeed.

17. This is Proposition 1.3.6 of ibid.

18. By Theorem 4.3.2(II1) of ibid., there exists a unique weight struture on

〈D〉 suh that D ⊂ 〈D〉w=0
. Next, Proposition 5.2.2 of ibid. yields that

w an be extended to the whole T ; along with part Theorem 4.3.2(II2)

of lo.it. it also allows to alulate Tw=0
in this ase.

19. Immediate from Proposition 5.2.2 of ibid. and the desription of 〈H〉w≤0

and 〈H〉w≥0
in the proof of Theorem 4.3.2(II1) of ibid.

20. If X ∈ Tw≤0
then the orthogonality ondition for w immediately yields:

Y ⊥ X for any Y ∈ ∪i<0D[i].

Conversely, suppose that for some X ∈ ObjT we have Y ⊥ X for all

Y ∈ ∪i<0D[i]. Then Y ⊥ X also for all Y belonging to the smallest

extension-stable sublass of ObjC ontaining ∪i<0D[i]. Hene this is also
true for all Y ∈ Tw≥1

(see the previous assertion). Hene (7) yields:

X ∈ Tw≤0
. We obtain the �rst part of the assertion.

The seond part of the assertion is dual to the �rst one (and easy from

(8)).

Remark 2.2.2. 1. In the notation of assertion 10, for any a (resp. b) suh
that the left (resp. right) hand square in (9) ommutes there exists some

b (resp. some a) that makes (9) a morphism of distinguished triangles

(this is just axiom TR3 of triangulated ategories). Hene for l < m the

left (resp. right) hand side of (9) haraterizes a (resp. b) uniquely.

2. Assertions 10 and 12 yield mighty tools for proving that a onstrution

desribed in terms of weight deompositions is funtorial (in a ertain

sense). In partiular, the proofs of funtoriality of weight �ltration and

virtual t-trunations for ohomology (we will onsider these notions be-

low) in [6℄ were based on assertion 10.

Now we explain what kind of funtoriality ould be obtained using asser-

tion lo.it. Atually, suh an argument was already used in the proof of

assertion 12.

In the notation of assertion 10 we will say that a and b are ompatible

with g (with respet to the orresponding weight deompositions). Now

suppose that for some X ′′ ∈ ObjC, some n ≤ l, g′ ∈ C(X ′, X ′′), and
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a distinguished triangle w≥n+1X
′′ → X ′ → w≤nX

′
we have morphisms

a′ : w≥l+1X
′ → w≥n+1X

′′
and b′ : w≤lX

′ → w≤nX
′′
ompatible with

g′. Then a′ ◦ a and b′ ◦ b are ompatible with g′ ◦ g (with respet to

the orresponding weight deompositions)! Moreover, if n < m then

(a′ ◦ a, b′ ◦ b) is exatly the (unique!) pair of morphisms ompatible with

g′ ◦ g.

3. In the notation of assertion 12 we will (also) say that h : w[l+1,m]X →
w[l′+1,m′]X

′
is ompatible with g. Note that h is uniquely haraterized

by (i) (or (ii)) of lo.it.; hene in order to haraterize it uniquely it

su�es to �x g and all the rows in (10) and (11) (or in (12) and (13)).

Besides, we obtain that h is funtorial in a ertain sense (f. the reasoning

above).

4. Assertion 11 immediately implies: for any l < m the lass of all possible

w≤lX oinides with the lass of possible w≤l(w≤mX), whereas the lass
of possible w≥mX oinides with those of w≥m(w≥lX).

Besides, assertion 11 also allows to onstrut weight Postnikov towers (f.

�1.5 of [6℄). Hene w[i,i]X is justXi[−i] (for any i ∈ Z, X ∈ ObjC), and a

weight omplex for any w[l+1,m]X an be assumed to be the orresponding

stupid trunation of the weight omplex of X.

5. Assertions 10 and 15 will be generalized in �2.7 below to the situation

when there are two distint weight strutures; this will also larify the

proofs of these statements. Besides, note that our remarks on funtorial-

ity are also atual for this setting.

Some of the proofs in �2.7 may also help to understand the onept of

virtual t-trunations (that we will start to study just now) better.

2.3 Virtual t-truncations of (cohomological) functors

Till the end of the setion C will be endowed with a �xed weight struture

w; H : C → A (A is an abelian ategory) will be a ontravariant (usually,

ohomologial) funtor. We will not onsider ovariant (homologial) funtors

here; yet ertainly, dualization is absolutely no problem.

Now we reall the results of �2.5 of [6℄ and develop the theory further.

Theorem 2.3.1. Let H : C → A be a ontravariant funtor, k ∈ Z, j > 0.
I The assignments H1 = Hkj

1 : X → Im(H(w≤kX) → H(w≤k+jX)) and

H2 = Hkj
2 : X → Im(H(w≥kX)→ H(w≥k+jX)) de�ne ontravariant funtors

C → A that do not depend (up to a anonial isomorphism) from the hoie of

weight deompositions. We have natural transformations H1 → H → H2.

II Let k′ ∈ Z, j′ > 0. Then there exist the following natural isomorphisms.

1. (Hkj
1 )k

′j′

1
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
1 .

2. (Hkj
2 )k

′j′

2
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
2 .
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3. (Hkj
1 )k

′j′

2
∼= (Hk′j′

2 )kj1
∼= Im(H(w[k,k′]X)→ H(w[k+j,k′+j′]X)). Here the last

term is de�ned using the onnetion morphism w[k+j,k′+j′]X → w[k,k′]X that

is ompatible with idX in the sense of Remark 2.2.2(3); the last isomorphism

is funtorial in the sense desribed in lo.it.

III Let H be ohomologial, j = 1; let k be �xed.

1. Hl (l = 1, 2) are also ohomologial; the transformations H1 → H → H2

extend anonially to a long exat sequene of funtors

· · · → H2 ◦ [1]→ H1 → H → H2 → H1 ◦ [−1]→ . . . (15)

(i.e. the sequene is exat when applied to any X ∈ ObjC).

2. H1
∼= H whenever H vanishes on Cw≥k+1

.

3. H ∼= H2 whenever H vanishes on Cw≤k
.

4. Let H ′ f
→ H

g
→ H ′′

be a (three-term) omplex of funtors exat in the middle

suh that:

(i) H ′, H ′′
are ohomologial.

(ii) for any X ∈ ObjC we have Coker g(X) ∼= Ker f(X[−1]) (we do not �x

these isomorphisms).

(iii) H ′
vanishes on Cw≥k+1

; H ′′
vanishes on Cw≤k

.

Then H ′ f
→ H is anonially isomorphi to H1 → H; H

g
→ H ′′

is anonially

isomorphi to H → H2.

Proof. I This is Proposition 2.5.1(III1) of [6℄.

II Easily follows from Theorem 2.2.1, parts 11 and 12; see Remark 2.2.2.

III1. This is Proposition 2.5.1(III2) of [6℄.

2. If H vanishes on Cw≥k+1
then for any X we have w≥k+1X = 0; hene H2

vanishes. Therefore in the long exat sequene · · · → H2(X[1])→ H1 → H →
H2(X)→ . . . given by assertion II1 we have H2(X[1]) ∼= 0 ∼= H2(X); we obtain
H1
∼= H.

Conversely, suppose that H1
∼= H. Let X ∈ ObjCw≥k+1

; we an assume that

w≤kX = 0. Then we have H(X) ∼= H1(X) = ImH(w≤kX)→ H(w≤k+1X)) =
0.
3. It su�es to apply assertion II1 to the dual funtor Cop → Aop

; note that the

axiomatis of abelian ategories, triangulated ategories, and weight strutures

are self-dual (see Remark 1.1.3(1) and Theorem 2.2.1(1)).

4. We should hek that in the diagram

H ′
1

g
−−−−→ H1





y

h





y

H ′ −−−−→ H

g and h are isomorphisms. Then g◦h−1
will yield the �rst isomorphism desired,

whereas dualization will yield the remaining half of the statement.

Now, assertion III2 yields that g in isomorphism.
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Next, for an X ∈ ObjC we hoose some weight deompositions for X[k] and
X[k + 1] and onsider the diagram

H
′′((w≤kX)[1]) −−−−−→ H

′(w≤kX)
l

−−−−−→ H(w≤kX) −−−−−→ H
′′(w≤kX)





y

a





y

b

H
′′((w≤k+1X)[1]) −−−−−→ H

′(w≤k+1X)
m

−−−−−→ H(w≤k+1X) −−−−−→ H
′′(w≤k+1X).

By our assumptions, H ′′((w≤kX)[1]) ∼= H ′′(w≤kX) ∼= H ′′((w≤k+1X)[1]) ∼= 0;
hene l is an isomorphism and m is a monomorphism. Hene the indued map

Im a → Im b is an isomorphism; so h is an isomorphism (sine its appliation

to any X ∈ ObjC is an isomorphism).

Definition 2.3.2. [virtual t-trunations of H℄

Let k,m ∈ Z. For a (o)homologial H we will all Hk1
l , l = 1, 2, k ∈ Z, virtual

t-trunations of H. We will often denote them simply by Hl; in this ase we

will assume k = 0 unless k is spei�ed expliitly.

We denote the following funtors C → A: Hk1
1 , Hk−1,1

2 , (Hm1
2 )k11 , and X 7→

(H01
1 )−11

2 (X[k]) by τ≤kH, τ≥kH, τ[m+1,k]H, and Hτ=k
, respetively. Note that

all of these funtors are ohomologial if H is.

Remark 2.3.3. 1. Note that H often lies in a ertain triangulated 'ategory of

funtors' D (whose objets are ertain ohomologial funtors C → A). We will

axiomatize this below by introduing the notion of a duality Φ : Cop×D → A: if
Φ is a duality then for any Y ∈ ObjD we have a ohomologial funtor Φ(−, Y ) :
C → A. It is also often the ase when the virtual t-trunations de�ned are

ompatible with atual t-trunations with respet to some t-struture t on D
(see below). Still, it is very amusing that these t-trunated funtors as well as

their transformations orresponding to t-deompositions (see De�nition 1.1.1)

an be desribed without speifying any D and Φ!

2. Below we will need an expliit desription of the onneting morphisms in

(15). We give it here (following the proof of Proposition 2.5.1 of [6℄).

The transformation H1 → H (resp. H → H2) for any k, j an be alulated by

applying H to any possible hoie either of X → w≤kX or of X → w≤k+jX
(resp. of w≥kX → X or of w≥k+jX → X) that omes from any possible hoie

the orresponding weight deomposition. The transformation H2 → H1 ◦ [−1]
for j = 1 is given by applying H to any possible hoie either of the morphism

w≤k+1X → w≥k+2X[1] or of the morphism w≤kX → w≥k+1X[1] that omes

from any possible hoie of a weight deomposition of X[k].

Here we use the following trivial observation: for A-morphisms X1
f1
→ Y1 and

X2
f2
→ Y2 any g : X1 → X2 (resp. h : Y1 → Y2) is ompatible with at most one

morphism i : Im f1 → Im f2; if suh an i exists, we will say that it is indued

by g (resp. by h). Certainly, here f1 ould be equal to idX1
or f2 ould be

equal to idX2
.
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3. For any k, j, and any C-morphism g : X → Y the morphism H1(X) →
H1(Y ) (resp. H2(X) → H2(Y )) is indued by any hoie of either of the

morphism w≤kX → w≤kY or of w≤k+jX → w≤k+jY (resp. of the morphism

w≥kX → w≥kY or of w≥k+jX → w≥k+jY ) that is ompatible with g with

respet to the orresponding weight deomposition (in the sense of Remark

2.2.2(2)); see the proof of Proposition 2.5.1 of [6℄.

We would like to extend assertion III4 of Theorem 2.3.1 to a statement on a

(anonial) isomorphism of long exat sequenes of funtors. To this end we

need the following de�nition.

Definition 2.3.4. 1. We will all a sequene of funtors C = · · · → H ′′ ◦

[1]
[1](h)
→ H ′ f

→ H
g
→ H ′′ h

→ H ′ ◦ [−1]→ . . . of ontravariant funtors C → Ab a
strongly exat omplex if H ′, H,H ′′

are ohomologial and C(X) is a long exat
sequene for any X ∈ ObjC; here [1](h) is the transformation indued by h.
2. We will also say that a strongly exat omplex C is nie in H if the following

ondition is ful�lled:

For any distinguished triangle T = A
l
→ B

m
→ C

n
→ A[1] in C the natural

morphism p:

Ker((H ′(A)
⊕

H(B)
⊕

H ′′(C))









f(A) −H(l) 0
0 g(B) −H ′′(m)

−H ′([−1](n)) 0 h(C)









−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(H(A)
⊕

H ′′(B)
⊕

H ′(C[−1])))
p
→ Ker((H ′(A)

⊕

H(B))

f(A)⊕−H(l)
−−−−−−−−→ H(A)) is epimorphi.

(16)

Now we desribe the onnetion of (16) with trunated realizations; our argu-

ments will also somewhat larify the meaning of this ondition.

Theorem 2.3.5. 1. Let C be a strongly exat omplex of funtors that is nie

in H; let H ′ f
→ H

g
→ H ′′

(a 'piee' of C) satisfy the onditions of assertion

III4 of Theorem 2.3.1. Then C is anonially isomorphi to (15).

2. Let X → Y → Z be a distinguished triangle in C. Then C = · · · →
C(−, X)→ C(−, Y )→ C(−, Z)→ . . . is a strongly exat omplex of funtors

C → Ab; it is nie in C(−, Y ).
3. Let there exist a (skeletally) small full triangulated C ′ ⊂ C suh that the re-

strition of a strongly exat omplex C to C ′
is nie in H. For D ∈ ObjC

we onsider the projetive system L(D) whose elements are (E, i) : E ∈
ObjC ′, i ∈ C(D,E); we set (E, i) ≥ (E′, i′) if (E, i) = (E′

⊕

E′′, i′ ⊕ i′′)
for some (E′′, i′′) ∈ L(D).
Suppose that for any D ∈ C and for G = H ′

and G = H we have

lim
−→L(D)

(ImG(i) : G(E)→ G(D)) = G(D); (17)
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here we also assume that these limits exist. Then C is nie on C also.

4. Let C ′ ⊂ C be a (skeletally) small triangulated subategory, let A satisfy

AB5. Let C ′ = · · · → H ′ → H → H ′′ → . . . be a strongly exat omplex

of funtors C ′ → A. We extend all its terms from C ′
to C by the method

of Proposition 1.2.1 and denote the omplex obtained by C; we arry on the

notation for the terms and arrows from C ′
to C. Then C is a strongly exat

omplex also (and its terms are ohomologial funtors).

It is nie in H whenever C ′
is.

Proof. 1. It su�es to hek that the isomorphism provided by Theorem

2.3.1(III4) is ompatible with the oboundaries if (16) is ful�lled. We an

assume A = Ab; see Remark 1.1.8. Then (16) transfers into: for any

(x, y) : x ∈ H ′(A), y ∈ H(B), f(A)(x) = H(l)(y) there exists a

z ∈ H ′′(C) suh that g(B)(y) = H ′′(z) and H([−1](n))(x) = h(C)(z). (18)

We should prove: if the images of x ∈ H2(X) and of y ∈ H ′′(X) in H ′′
2 (X) o-

inide, w ∈ H1(X[−1]) and t = H(X)(y) ∈ H ′(X[−1]) are their oboundaries,
then w and t ome from some (single) u ∈ H ′

1(X[−1]).
We lift x to some x′ ∈ H(w≥k+1X). Then (16) (if we substitute w≥k+1 for A
and X for B in it) implies the existene of some v ∈ H ′((w≤kX)[−1]) whose
image in H ′(X[−1]) (resp. in H(w≤kX[−1])) oinides with t (resp. with the

oboundary of x′
). Hene we an take u being the image of v (in H ′

1(X[−1])).
2. Sine the bi-funtor C(−,−) is (o)homologial with respet to both argu-

ments, C is a strongly exat omplex indeed. It remains to note: (16) in this

ase just means that any ommutative square an be ompleted to a morphism

of distinguished triangles; so it follows from the orresponding axiom (TR3) of

triangulated ategories.

3. First suppose that A = Ab (or any other abelian ategory equipped with

an exat faithful funtor A → Ab that respets small diret limits; note that

below we will only need A = Ab). Then we should hek (18).

Now note: it su�es to prove that there exist A′, B′ ∈ ObjC ′, l′ ∈ C(A′, B′),
α ∈ C(A,A′), β ∈ C(B,B′), x′ ∈ H ′(A′), g′ ∈ H(B′) suh that:

x = H ′(α)(x′), y = H(β)(y′), l′ ◦ α = β ◦ l, f(A′)(x′) = H(l′)(y′). (19)

Indeed, denote C ′ = Cone(l′); denote by γ some element of C(C,C ′) that

ompletes

A −−−−→ B




y





y

A′ −−−−→ B′

to a morphism of triangles. Let z′ ∈ H ′′(C ′) be some element satisfying the

obvious analogue of (18). Then h = H ′′(γ)(h′) is easily seen to satisfy (18).

Now we onstrut A′, B′, . . . as desired. Note that in this ase the assumption

(17) is equivalent to: for any t ∈ G(D) there exist E ∈ ObjC ′
, s ∈ G(D), and
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r ∈ C(D,E), suh that t = G(r)(s) (sine C ′
is additive). So, we an hoose

A′ ∈ ObjC ′
, α ∈ C(A,A′), x′ ∈ H ′(A′) suh that x = H ′(α)(x′). We omplete

q = α ⊕ l ∈ C(A,A′
⊕

B) to a distinguished triangle A → A′
⊕

B
p=p1⊕p2
→

D. Sine H(q)((−H ′(f(A′)(x′), y)) = 0, there exists an s ∈ H(D) suh that

H(p)(s) = (−H ′(f(A′)(x′), y) (reall that H is ohomologial on C). So, we

have H(p2)(s) = y, −H(p1)(s) = f(A′)(X ′), p2 ◦ l = −p1 ◦ α.
D �ts for B′

if it lies in ObjC ′
. In the general ase using (17) again, we hoose

B′ ∈ ObjC ′
, δ ∈ C(D,B′), g′ ∈ H(Y ), suh that s = H(δ)(g′). Then it is

easily seen that taking l′ = −δ ◦ p1, β = δ ◦ p2, we omplete the hoie of a set

of data satisfying (19).

This argument an be modi�ed to work for a general A. To this end we separate

those parts of the reasoning where we used the fat that H is ohomologial

from those where we deal with limits; this allows us to 'work as if A = Ab'.
We denote Ker(H ′(A)

⊕

H(B))→H(A)) (with respet to the morphism in (16)

by S(A,B), and Ker(H ′(A)
⊕

H(B)
⊕

H
′′(C))→H(A)

⊕
H

′′(B)
⊕

H
′(C[−1]) by

T (A,B,C).
Then we have a ommutative diagram

lim
−→

(Im(T (A′, B′, C ′)→ T (A,B,C)))
t′

−−−−→ lim
−→

(Im(S(A′, B′)→ S(A,B)))




y





y

i

T (A,B,C)
t

−−−−→ S(A,B)

here the �rst diret limit above is taken with respet to morphisms of triangles

(A → B → C) → (A′ → B′ → C ′) for A′, B′, C ′ ∈ ObjC ′
(the ordering is

similar to those of (17)); the seond limit is taken similarly with respet to

morphisms (A→ B)→ (A′ → B′) for A′, B′ ∈ ObjC ′
. Sine the restrition of

C to C ′
is nie in H, for all A′, B′, C ′

the morphism T (A′, B′, C ′)→ S(A′, B′)
is epimorphi; hene t′ is epimorphi. Therefore, it su�es to prove that i is
epimorphi.

Now let us �x A′ = A0 and α = α0. We use the notation introdued above;

denote the preimage of Im(H ′(α) : H ′(A′) → H ′(A)) with respet to the

natural morphism S(A,B)→ H ′(A) by J . Then J equals Im(H ′(A′)×H(D)→
S(A,B)). Indeed, here we an apply Proposition 1.1.7 (see Remark 1.1.8) and

then apply the reasoning 'with elements' used above.

In any A we obtain: sine Φ(D,Y ) = lim
−→

(Im(Φ(B′, Y )→ Φ(D,Y ))), we obtain
that G = lim

−→
(Im(S(A0, B

′, X, Y )→ S(A,B,X, Y ))). Here we use the following
fat (valid in any abelian A): if Ji ⊂ J ′ ∈ ObjA, lim

−→
Ji = J (for some projetive

system), u : J ′ → J is an A-epimorphism, then lim
−→

u(Ji) = J .
Now, passing to the limit with respet to (A0, α0) (using (17)) �nishes the

proof.

4. C is a omplex indeed sine the extension proedure is funtorial.

By Proposition 1.2.1(I1), all the terms of C are ohomologial on C. Also, part

II2 of lo.it. immediately implies that C is exat (i.e. C(X) is exat for any
X ∈ ObjC). Hene C is a strongly exat omplex.
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Obviously, if C is nie in H then C ′
also is.

Conversely, let C ′
be nie in H. Then Proposition 1.2.1(II1) implies that H ′

and H satisfy (17) (for all D). Hene C is nie in H by assertion 3.

2.4 Weight spectral sequences and filtrations; relation with vir-
tual t-truncations

Definition 2.4.1. For an arbitrary (C,w) let H : C → A be a ohomologial

funtor (A is any abelian ategory).

We de�ne W i(H) : C → A as X → Im(H(w≤iX)→ H(X)).

By Proposition 2.1.2(2) of [6℄, W i(H)(X) does not depend on the the hoie

of the weight deomposition of X[i]; it also de�nes a (anonial) subfuntor of

H(X).

Now reall that Postnikov towers yield spetral sequenes for ohomology. We

will denote H(X[−i]) by Hi(X) (for X ∈ ObjC). We will also use the notation

of De�nition 2.3.2.

Theorem 2.4.2. Let k,m ∈ Z.

I1. For any weight Postnikov tower for X (see De�nition 2.1.2(9)) there exists

a spetral sequene T = T (H,X) with Epq
1 (T ) = Hq(X−p) suh that the map

Epq
1 → Ep+1q

1 is indued by the morphism X−p−1 → X−p
(oming from the

tower). We have T (H,X) =⇒ Hp+q(X) for any X ∈ Cb
.

One an onstrut it using the following exat ouple: Epq
1 = Hq(X−p), Dpq

1 =
Hq(Xw≥1−p).

2. T is (ovariantly) funtorial in H; it is ontravariantly C-funtorial in X
starting from E2.

3. Denote the step of �ltration given by (El,m−l
1 : l ≥ −k) on Hm(X) by

F−kHm(X). Then F−kHm(X) = (W kHm)(X).

II The derived exat ouple for T (H,X) an be naturally alulated in terms of

virtual t-trunations of H in the following way: Epq
2
∼= E′pq

2 = (Hq)τ=−p(X),
Dpq

2 = D′pq
2 = (τ≥qH)(X[1 − p]); the onneting morphisms of the ouple

((E′
2, D

′
2)) ome from (15).

III1. F−kHm(X) = Im((τ≤kH
m)(X)→ Hm(X)) (with respet to the onnet-

ing morphism mentioned in Theorem 2.3.1(I)).

2. For any r ≥ 2, p, q ∈ Z there exists a funtorial isomorphism Epq
r
∼=

(F p(τ[−p+2−r,−p+r−2]H)q)p/F p+1(τ[−p+2−r,−p+r−2]H)q)p.

Proof. I This is Theorem 2.4.2 of [6℄; see also Remark 2.4.1 of ibid. for the

disussion of exat ouples.

In fat, assertion 1 follows easily from well known properties of Postnikov towers

and of related spetral sequenes.

II Sine virtual t-trunations are funtorial, the exat ouple (D′
2, E

′
2) is fun-

torial also.
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The de�nitions of the derived exat ouple and of the virtual t-trunations
imply immediately that Dpq

2 and their onneting maps are exatly D′pq
2 (and

their onneting morphisms) spei�ed in the assertion.

It remains to ompare E2 with E′
2, and also the onneting maps of exat

ouples starting and ending in E2 with those for E′
2. It su�es to onsider

p = q = 0. Our strategy is the following one. First we onstrut an isomorphism

E00
2 → E′00

2 ; our onstrution depends on some hoies. Then we prove that the

isomorphism onstruted is atually natural (in partiular, it does not depend

on the hoies made). Lastly we verify that the isomorphisms of the terms of

the exat ouples onstruted is ompatible with the onneting morphisms of

these ouples. Note that in this (last) part of the argument we an make those

hoies (of ertain weight deompositions) that we like.

By the de�nition of the derived exat ouple we have: E00
2 is the 0-th ohomol-

ogy of the omplex (H(X−j)) (for any hoie of the weight omplex (Xi)). E′00
2

is the image of H(k) where k ∈ C(w[0,1]X,w[−1,0]X) is any morphism that is

ompatible with idX with respet to the orresponding weight deompositions

(see see Theorem 2.3.1(II3) and Remark 2.2.2(3)). So, we should ompare a

subfator of H(X0) with a subobjet of H(w[0,1]X).

Now suppose that we are given an otahedral diagram ontaining a ommu-

tative triangle w[1,1]X → w[0,1]X → w[−1,1]X (see Theorem 2.2.1(11)). We

ould obtain it as follows: �x some w[−1,1]X; then hoose ertain w[0,1]X =
w≥0(w[−1,1]X) and w[1,1]X = w≥1(w[−1,1]X) (see Remark 2.2.2(4)). For any

possible ompletion of the ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X
to an otahedral diagram, the remaining verties of the otahedron are ertain

w[−1,0]X, w[0,0]X = X0
, and w[−1,−1]X = X−1[1] (by Theorem 2.2.1(11)). We

obtain morphisms w[0,1]X
i
→ X0 j

→ w[−1,0]X suh that k = j ◦ i. Moreover,

Im(H(X1) → H(X0)) = KerH(i). Hene H(i) indues some monomorphism

α : H(X0)/ Im(H(X1) → H(X0)) to H(w[0,1]X). Besides, Ker(H(X0) →
H(X−1)) = ImH(j); therefore the restrition of α to α−1(ImH(k)) yields an
isomorphism β : E00

2 → E′00
2 .

Now we verify that the isomorphism onstruted is natural.

Note that it atually depends only on w[0,1]X
i
→ X0

and ImH(k) (we used

the remaining data only in order to verify that we atually obtain an iso-

morphism). So, suppose that we have X ′ ∈ ObjC, g ∈ C(X,X ′), and some

hoie of w≥0X
′
, w≥1X

′
, and w≥2X

′
. We have anonial onneting mor-

phisms w≥0X
′ → w≥1X

′ → w≥2X
′
that are ompatible with idX′

with respet

to the morphisms w≥lX
′ → X ′

(l = 0, 1, 2). Applying Theorem 2.2.1(11), we

obtain a hoie of w[0,1]X
′ i′

→ X ′0
. We also �x some hoie of H(k′) (in order

to do this we �x some hoie of w≤−1X and of w[−1,0]X). Note that all of

these hoies are neessarily ompatible with some hoie of the isomorphism

β′ : E00
2 (X ′)→ E′00

2 (X ′) onstruted as above (see 2.2.2(2)).

Now we hoose some morphisms gl : w≥lX → w≥lX
′
, for −1 ≤ l ≤ 2, ompat-

ible with g (see Remark 2.2.2(2)). These hoies ould be extended to some

morphisms a : w[0,1]X → w[0,1]X
′
and b : X0→X ′0

(by extending morphisms
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of arrows to morphism of distinguished triangles).

Now we verify the ommutativity of the diagram

w[0,1]X
i

−−−−→ X0





y

a





y

b

w[0,1]X
′ i′

−−−−→ X ′0

It follows from Theorem 2.2.1(10) applied to the morphism g0 : w≥0X →
w≥0X

′
, l = 1, m = 2 (sine both b ◦ i and i′ ◦ a are ompatible with g0).

Moreover, Remark 2.2.2(3) yields that H(a) sends H(k) to H(k′). We obtain

a ommutative diagram

E00
2

β
−−−−→ E′00

2




y





y

E00
2 (H,X ′)

β′

−−−−→ E′00
2 (H,X ′)

Sine E00
2 (H,−) and E′00

2 (H,−) are Cop
-funtorial (and the vertial arrows in

the diagram are exatly those that yield this funtoriality; see Remark 2.3.3(3)),

we obtain the naturality in question.

Now it remains to prove that the isomorphisms of terms of exat ouples on-

struted above is ompatible with the (two remaining) onneting morphisms

of these ouples.

First onsider the morphisms E00
2 → D10

2 . Reall (by the de�nition of the

derived exat ouple) that it is indued by any morphism w≥0X → X0

that extends to a weight deomposition of w≥0X (here we onsider E00
2 as

a subfator of H(X0)). On the other hand, the morphism E′00
2 → D′10

2 =
Im(H(w≥−1X)→ H(w≥0X)) is indued by any possible hoie of a morphism

w≥0X → w[0,1]X that yields a weight deomposition of w≥0X[1] (by Remark

2.3.3(2); see also Remark 2.2.2(3)). Hene it su�es to note that the triangle

w≥0X → w[0,1]X
i
→ X0

is neessarily ommutative by Remark 2.2.2.

It remains onsider the morphism D1,−1
2 → E00

2 . It is indued by the morphism

X0 → w≥1X (that yields a weight deomposition of w≥0X). The morphism

D′1,−1
2 (= Im(H(w≥1X)[1]) → H(w≥2X)[1])) → E′00

2 is indued by the mor-

phism w[0,1]X → w≥2X[1]. Hene it su�es to onstrut a ommutative square

w[0,1]X
i

−−−−→ X0





y





y

w≥2X[1] −−−−→ w≥1X[1]

By applying Theorem 2.2.1(11) to the ommutative triangle w≥2X → w≥1X →
w≥0X we obtain that there exists suh a ommutative square with a ertain i0
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instead of i. Note that (by lo.it.) i0 yields a weight deomposition of w[0,1]X.

It su�es to verify that we may take i0 for i i.e. that i0 ould be ompleted to

an otahedral diagram one of whose faes yields some hoie of the ommutative

triangle w[1,1]X → w[0,1]X → w[−1,1]X. We take w[1,1]X = Cone i0[−1], hoose
some w[−1,1]X (oming from the same w≤1X as w[0,1]X). By Remark 2.2.2(2)

we obtain a unique ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X that

is ompatible with idw≤1X respet to the orresponding weight deompositions.

It remains to apply Theorem 2.2.1(11).

III We an assume k = m = 0.

1. In the notation of Theorem 2.3.1 we onsider the morphism of spetral

sequenes M : T (H1, X)→ T (H,X) (indued by H1 → H). Part II of lo.it.

implies: M is an isomorphism on Epq
2 for p ≥ −k and Epq

2 (T (H1, X)) = 0
otherwise. The assertion follows immediately.

2. Similarly to the the previous reasoning, we have natural isomorphisms:

Epq
2 (T (τ[2−r,r−2]H,X) ∼= Epq

2 (T (H,X)) for 2−r ≤ p ≤ r−2 and = 0 otherwise.
It easily follows that Epq

∞(T (τ[2−r,r−2]H,X) ∼= Epq
r (T (τ[−p+2−r,−p+r−2]H,X).

The result follows immediately.

Remark 2.4.3. 1. The dual of assertion II is: if we onsider the alternative

exat ouple for our weight spetral sequene (see Remark 2.1.3) then the

derived exat ouple an also be desribed in terms of virtual t-trunations (in
a way that is dual in an appropriate sense to that of Theorem 2.4.2).

2. Possibly, at least a part of (assertion II of) the theorem ould be proved by

studying the funtoriality of the derived exat ouple (and applying Theorem

2.3.5(1)).

2.5 Dualities of triangulated categories; orthogonal weight and
t-structures

Let C,D be triangulated ategories. We study ertain pairings of triangulated

ategories Cop ×D → A. In the following de�nition we onsider a general A,
yet below we will mainly need A = Ab.

Definition 2.5.1. 1. We will all a (ovariant) bi-funtor Φ : Cop ×D → A a

duality if it is bi-additive, homologial with respet to both arguments; and is

equipped with a (bi)natural transformation Φ(X,Y ) ∼= Φ(X[1], Y [1]).

2. We will say that Φ is nie if for any distinguished triangle X → Y → Z the

orresponding (strongly exat) omplex of funtors

· · · → Φ(−, X)→ Φ(−, Y )→ Φ(−, Z)
f
→ Φ([−1](−), X)→ . . . (20)

is nie in Φ(−, Y ) (see De�nition 2.3.4); here f is obtained from the natu-

ral morphism Φ(−, Z)→Φ(−, X[1]) by applying the (bi)natural transformation

mentioned above.
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3. Suppose that C is endowed with a weight struture w, D is endowed with a

t-struture t. Then we will say that w is (left) orthogonal to t with respet to

Φ if the following orthogonality ondition is ful�lled:

Φ(X,Y ) = 0 if: X ∈ Cw≤0
and Y ∈ Dt≥1, or X ∈ Cw≥0

and Y ∈ Dt≤−1.
(21)

4. If w is de�ned on Cop
, t is de�ned on Dop

, w is left orthogonal to t (with
respet to some duality); then we will say that the orresponding opposite

weight struture on C is right orthogonal to the opposite t-struture for D.

Remark 2.5.2. 1. The axioms of Φ immediately imply that (20) is a strongly

exat omplex of funtors indeed (whether Φ is nie or not).

2. Certainly, if Φ is nie then (20) is nie at any term (sine we an 'rotate'

distinguished triangles in D).

First we prove a statement that will simplify heking the orthogonality of

weight and t-strutures.

Proposition 2.5.3. Let Φ : Cop × D → A be some duality; let (C,w) be

bounded. Then w is (left) orthogonal to t whenever there exists a D ⊂ Cw=0

suh that any objet of Cw=0
is a retrat of a �nite diret sum of elements of

D and

Φ(X,Y ) = 0 ∀ X ∈ D, Y ∈ Dt≥1 ∪Dt≤−1. (22)

Proof. If w is is left orthogonal to t, then (22) for D = Cw=0
follows immedi-

ately from the orthogonality ondition.

Conversely, let D satisfy the assumptions of our assertion. Hene we have:

Φ(X,Y ) = 0 if X ∈ D[i], i ≥ 0, Y ∈ Dt≥1
, or if X ∈ D[i], i ≤ 0, Y ∈ Dt≤−1

.

Now suppose that for some E,F ⊂ ObjC we have: any objet of Cw≤0
is a

retrat of an objet of E, any objet of Cw≥0
is a retrat of an objet of F .

Then it obviously su�es to hek that Φ(X,Y ) = 0 if either X ∈ E and

Y ∈ Dt≥1
or X ∈ F and Y ∈ Dt≤−1

.

Now by Theorem 2.2.1(19), we an take E being the smallest extension-stable

subategory of C ontaining D[i], i ≥ 0; and F being the smallest extension-

stable subategory of C ontainingD[i], i ≤ 0. To onlude the proof it remains

to note that for a distinguished triangle X → Y → Z in C, O ∈ ObjD we have:

Φ(X,O) = 0 = Φ(Z,O) =⇒ Φ(Y,O) = 0.

When (weight and t-) strutures are orthogonal, virtual t-trunations of

Φ(−, Y ) are given by t-trunations in D. We use the notation of De�nition

2.3.2.

Proposition 2.5.4. 1. Let t be orthogonal to w with respet to Φ, k ∈ Z.

For Y ∈ ObjD denote the funtor Φ(−, Y ) : C → A by H. Then we have

an isomorphism of omplexes (τ≤kH → H → τ≥kH) ∼= (Φ(−, t≤kY ) → H →
Φ(−, t≥k+1Y )) (where the onneting maps of the seond omplex are indued

by t-trunations); this isomorphism is natural in Y .
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2. Suppose also that Φ is nie. Then the (strongly exat) omplex of funtors

that sends X to

· · · → Φ(X, t≤kY )→ Φ(X,Y )→ Φ(X, t≥k+1Y )→ Φ(X[−1], t≤kY )→ . . .
(23)

(onstruted as in the de�nition of a nie duality) is naturally isomorphi to

(15).

Proof. 1. Sine t and w orthogonal, Φ(−, t≤kY ) vanishes on Cw≥k+1
, whereas

Φ(−, t≥k+1Y ) vanishes on Cw≤k
. Moreover, (23) yields that H ′ = Φ(−, t≤kY )

and H ′′ = Φ(−, t≥k+1Y ) also satisfy the ondition (iii) of Theorem 2.3.1(III4).

Hene the theorem yields the laim.

2. Immediate from the previous assertion and Theorem 2.3.5(1).

Remark 2.5.5. Note that we atually need quite a partial ase of the 'nieness

ondition' for Φ in order to prove assertion 2. Hene here (and so, in all the

appliations below) we will not need the nieness ondition in its full generality.

Possibly, the orresponding partial ase of the ondition is weaker than the

whole assertion; yet heking it does not seem to be muh easier.

Also, it seems quite possible that for an arbitrary (not neessarily nie) duality

there exists some isomorphism of (15) with (23) if we modify the boundary

maps of the seond omplex. Yet there seems to be no way to hoose suh a

modi�ation anonially.

'Natural' dualities are nie; we will justify this thesis now.

Proposition 2.5.6. 1. If A = Ab, D = C, then Φ : (X,Y ) 7→ C(X,Y ) is a

nie duality.

2. For some duality Φ : Cop × D → A let there exist a (skeletally) small full

triangulated C ′ ⊂ C suh that: the restrition of Φ to C ′op×D is a nie duality

(of C ′
with D); for any X ∈ ObjD the funtor G = Φ(−, X), Cop → A,

satis�es (17). Then Φ is nie also.

3. For D, C ′ ⊂ C as above, A satisfying AB5, let Φ′ : C ′op × D → A be a

duality. For any Y ∈ ObjD we extend the funtor Φ′(−, Y ) from C ′
to C by

the method of Proposition 1.2.1; we denote the funtor obtained by Φ(−, Y ).
Then the orresponding bi-funtor Φ is a duality (Cop × D → A). It is nie

whenever Φ′
is.

Proof. Immediate from parts 2�4 of Theorem 2.3.5.

Remark 2.5.7. 1. Proposition 2.5.6(1) yields an important family of nie dual-

ities; this ase was thoroughly studied in [6℄ (in setions 4 and 7). We will say

that w is left (resp. right) adjaent to t if it is left (resp. right) orthogonal to it

with respet to Φ(X,Y ) = C(X,Y ). Note that for w left (resp. right) adjaent

to t with respet to this de�nition we neessarily have Cw≤0 = Ct≤0
(resp.
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Cw≥0 = Ct≥0
) by Theorem 2.2.1(2) and Remark 1.1.3(2); so this de�nition is

atually ompatible with De�nition 4.4.1 of [6℄.

One an generalize this family as in �8.3 of ibid.: for A = Ab and an exat

F : D → C we de�ne Φ(X,Y ) = C(X,F (Y )). Certainly, one ould also

dualize this onstrution (in a ertain sense) and onsider F : C → D and

Φ(X,Y ) = C(F (X), Y ).

2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) of

ibid. All the families of dualities mentioned an be expanded using part 3 of

the proposition.

3. It is also easy to onstrut a duality that is not nie. To this end one an

start with C = D, Φ = C(−,−) and then modify the hoie of distinguished

triangles in D (without hanging the shift in D, and hanging nothing in C)

in a way that would not a�et the properties of funtors to be ohomologial.

The simplest way to do this is to prolaim a triangle X
f
→ Y

g
→ Z

h
→ X[1] to

be distinguished in D if X
−f
→ Y

−g
→ Z

−h
→ X[1] is distinguished in C. Certainly,

suh a modi�ation is not very 'serious'; in partiular, one an '�x the problem'

by multiplying the isomorphism Φ(X,Y ) ∼= Φ(X[1], Y [1]) by −1.

The author does not know whether any duality an be made nie by modifying

the hoie of the lass of distinguished triangles (in D), or by modifying the iso-

morphism mentioned. Note also that the question whether there exists a D for

whih suh a modi�ation an hange the 'equivalene lass' of triangulations

is well-known to be open.

2.6 Comparison of weight spectral sequences with those coming
from (orthogonal) t-truncations

Now we desribe the relation of weight spetral sequenes with orthogonal

strutures.

Theorem 2.6.1. Let w for C and t for D be orthogonal with respet to a duality

Φ; let i, j ∈ Z, X ∈ ObjC, Y ∈ ObjD.

1. Consider the spetral sequene S oming from the following exat ouple:

Dpq
2 (S) = Φ(X,Y t≥q[p − 1]), Epq

2 (S) = Φ(X,Y t=q[p]) (we start S from

E2). It naturally onverges to Φ(X,Y [p+ q]) if X ∈ Cb
.

2. Let T be the weight spetral sequene given by Theorem 2.4.2 for the

funtor H : Z 7→ Φ(Z, Y ). Then for all r ≥ 2 we have natu-

ral isomorphisms Epq
r (T (H,X)) ∼= Epq

r (S). There is also an equality

F−kHm(X) = Im(Φ(X, t≤kY [m]) → Hm(X)) (here we use the notation

of part I4 of lo.it.) ompatible with this isomorphism.

3. Suppose that Φ is also nie. Then the isomorphism mentioned in the

previous assertion extends naturally to the isomorphism of of T with S
(starting from E2).
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4. Let · · · → X−j−1 → X−j → X1−j → . . . denote an arbitrary hoie of

the weight omplex for X. Then we have a funtorial isomorphism

Φ(X,Y t=i[j]) ∼=

(Ker(Φ(X−j , Y [i]) → Φ(X−1−j , Y [i]))/ Im(Φ(X1−j , Y [i]) → Φ(X−j , Y [i])).
(24)

Proof. 1. The theory of t-strutures easily yields: Y t≥q
and Y t=q

an be

funtorially organized into a ertain Postnikov tower for Y . Hene the

usual results on spetral sequenes oming from Postnikov towers (see

�IV2, Exerise 2, of [13℄) yield the assertion easily.

2. Immediate from Proposition 2.5.4(1) and Theorem 2.4.2(III). Note that

the latter assertion does not use the 'dimension shift' in (15).

3. Proposition 2.5.4(2) and Theorem 2.4.2(II) imply: there is a natural iso-

morphism of the derived exat ouple for T with the exat ouple of S
('at level 2'). The result follows immediately.

4. This is just assertion 2 for E2-terms.

Remark 2.6.2. 1. So, we justi�ed parts 4 and 5 of Remark 4.4.3 of [6℄.

2. Note that the spetral sequene denoted by S in (Remark 4.4.3(4) and

�6.4 of) ibid. started from E1; so it di�ered from our S and T by a ertain

shift of indies.

3. So, we developed an 'abstrat triangulated alternative' to the method of

omparing similar spetral sequenes that was developed by Deligne and

Paranjape. The latter method used �ltered omplexes; it was applied in

[22℄, [11℄, and in �6.4 of [6℄. The disadvantage of this approah is that one

needs extra information in order to onstrut the orresponding �ltered

omplexes; this makes di�ult to study the naturality of the isomorphism

onstruted. Moreover, in some ases the omplexes required annot

exist at all; this is the ase for the spherial weight struture and its

adjaent Postnikov t-struture for C = D = SH (the topologial stable

homotopy ategory; see �4.6 of [6℄; yet in this ase one an ompare the

orresponding spetral sequenes using topology).

4. One ould modify our reasoning to prove a version of the theorem that

does not mention weight and t-strutures. To this end instead of onsid-

ering a weight Postnikov tower for X and the Postnikov tower oming

from t-trunations of Y one should just ompare spetral sequenes om-

ing from some Postnikov towers for X and Y in the ase when these

Postnikov towers satisfy those 'orthogonality' onditions (with respet to

a (nie) duality Φ) that are implied by the orthogonality of strutures
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ondition in our situation. Yet it seems di�ult to obtain the naturality

of the isomorphisms in Theorem 2.6.1(3) using this approah.

5. Even more generally, it su�es to have an indutive system of Postnikov

towers inD and a projetive system of Postnikov towers in C suh that the

orthogonality onditions required are satis�ed in the (double) limit. Then

the omparison statements for the double limits of the orresponding

spetral sequenes are valid also. A very partial (yet rather important)

example of a reasoning of this sort is desribed in �7.4 of [6℄. Besides, this

approah ould possibly yield the omparison result of �6 of [11℄ (even

without assuming k to be ountable as we do here).

6. A simple (yet important) ase of (24) is: for any i ∈ Z

X ∈ Cw=i =⇒ ∀Y ∈ ObjD we have Φ(X,Y ) ∼= Φ(X,Y t=i). (25)

2.7 ’Change of weight structures’; comparing weight spectral
sequences

Now we ompare weight deompositions, virtual t-trunations, and weight spe-
tral sequenes orresponding to distint weight strutures. In order make our

results more general (and to apply them below) we will assume that these stru-

tures are de�ned on distint triangulated ategories; yet the ase when both

are de�ned on C is also interesting.

So, till the end of the setion we will assume: C,D are triangulated ategories

endowed with weight strutures w and v, respetively; F : C → D is an exat

funtor.

Definition 2.7.1. 1. We will say that F is right weight-exat if F (Cw≥0) ⊂
Dv≥0

.

2. If F is fully faithful and right weight-exat, we will say that v dominates w.
3. We will say that F is left weight-exat if F (Cw≤0) ⊂ Dv≤0

.

4. F will be alled weight-exat if it is both right and left weight-exat.

We will say that w indues v (via F ) if F is a weight-exat loalization funtor.

Proposition 2.7.2. Let F be a right weight-exat funtor; let l ≥ m ∈ Z,

X ∈ ObjD, X ′ ∈ ObjC, g ∈ D(F (X ′), X).
1. Let weight deompositions of X[m] with respet to v and X ′[l] with respet

to w be �xed. Then g an be ompleted to a morphism of distinguished triangles

F (w≥l+1X
′) −−−−→ F (X ′) −−−−→ F (w≤lX

′)




y

a





y

g





y

b

v≥m+1X −−−−→ X −−−−→ v≤mX

(26)

This ompletion is unique if l > m.
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2. For arbitrary weight Postnikov towers Pov(X) for X (with respet to v)
and PowX

′
for X ′

(with respet to w), g an be extended to a morphism

F∗(PowX
′)→ Pov(X).

3. Let H : D → A be any funtor, k ∈ Z, j > 0. Denote H ◦ F by G. Then

(26) allows to extend H(g) naturally to a diagram

Hv
1 (X) −−−−→ H(X) −−−−→ Hv

2 (X)




y





y

H(g)





y

Gw
1 (X

′) −−−−→ G(X ′) −−−−→ Gw
2 (X

′)

here we add the weight struture hosen as an index to the notation of Theorem

2.3.1(I).

Proof. 1. Sine F is right weight-exat, D(F (w≥n+1X
′), v≤mX) = {0} for any

n ≥ m. Hene the omposition morphism F (w≥l+1X
′) → v≤mX is zero; if

l > m then D(F (w≥l+1X
′), (v≤mX)[−1]) = {0}. The result follows easily; see

Proposition 1.1.9 of [2℄.

2. Assertion 1 (in the ase l = m) yields that there exists a system of morphisms

fi ∈ D(F (w≥iX
′), v≥iX) ompatible with g; we �x suh a system. Applying

the same assertion for any pair of l,m : l > m, we obtain that fl is ompatible

with fm (here we use arguments similar to those desribed in Remark 2.2.2).

Finally, sine any ommutative square an be extended to a morphism of the

orresponding distinguished triangles (an axiom of triangulated ategories), we

obtain that we an omplete (uniquely up to a non-anonial isomorphism)

the data hosen to a morphism of Postnikov towers (i.e. hoose a ompatible

system of morphisms F (X ′i)→ Xi
).

3. Easy from assertion 1; note that for any ommutative square in A

X
f

−−−−→ Y




y

h





y

Z
g

−−−−→ T

if we �x the rows then the morphism g ◦ h : X → T ompletely determines the

morphism Im f → Im g indued by h.

We easily obtain a omparison morphism of weight spetral sequenes.

Proposition 2.7.3. I Let F,X ′, G be as in the previous proposition; suppose

also that H is ohomologial. Set X = F (X ′), g = idX .

1. There exists some omparison morphism of the orresponding weight spetral

sequenes M : Tv(H,X)→ Tw(G,X ′). Moreover, this morphism is unique and

additively funtorial (in g) starting from E2.

2. Let there exist D ⊂ Cw=0
suh that any Y ∈ Cw=0

is a retrat of some

Z ∈ D, and that for any Z ∈ D there exists a hoie of Zw≥1
suh that
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Epq
2 Tv(H,F (Zw≥1)) = {0} for all p, q ∈ Z. Then (any hoie of) M yields an

isomorphism of the spetral sequene funtors starting from E2.

3. Let E be a triangulated ategory endowed with a weight struture u, F ′ : D →
E a right weight-exat funtor; suppose that H = E◦F ′

for some ohomologial

funtor E : E → A. Then we have the following assoiativity property for

omparison of weight spetral sequenes: the omposition of M with (any hoie

of) a omparison morphisms M ′ : Tu(E,F ′(X))→ Tv(H,X) onstruted as in

assertion 1, starting from E2 is anonially isomorphi to (any hoie of a

similarly onstruted) omparison morphism Tu(E,F ′(X))→ Tw(G,X ′).

II Let H,X ′, X,G be as above, but suppose that F : C → D is left weight-exat.

Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G,X ′) → Tv(H,X); this onstrution satis�es the duals for all properties

of M desribed in assertion I.

Proof. I 1. In order to onstrut some omparison morphism, it su�es to

onstrut a morphism of the orresponding exat ouples that is ompatible

with idX . Hene it su�es to use Proposition 2.7.2(2) to obtain a morphism

of the orresponding Postnikov towers, and then apply H to it.

Theorem 2.4.2(II) yields that weight spetral sequenes ould be desribed in

terms of the orresponding virtual t-trunations. Hene Proposition 2.7.2(3)

implies all the funtoriality properties of M listed.

2. It su�es to prove that M is an isomorphism on E∗∗
2 Tw(G,Y ) for all Y ∈

ObjC.

Sine D ⊂ Cw≥0
, this assertion is true for any Y ∈ D. Sine Z 7→ E2(T (G,Z))

is a ohomologial funtor for any weight struture (see Theorem 2.4.2 and the

remark at De�nition 2.3.2), the assertion is also true for any Y ∈ ObjCb
. To

onlude it su�es to note that for any H, any Y ∈ ObjC, any �nite 'piee'

of E∗∗
2 Tw(G,Y ) oinides with the orresponding piee of E∗∗

2 Tw(G,w[i,j]Y )
(for any hoie of w[i,j]Y ) if i is small enough and j is large enough, and this

isomorphism is ompatible with M .

3. We reall that omparison morphisms for weight spetral sequenes were

onstruted using Proposition 2.7.2(1). It easily follows that M ′ ◦M is one of

the possible hoies for a omparison morphism Tu(E,F ′◦F (X))→ Tw(G,X ′).
It su�es to apply assertion I1 to onlude that this �xed hoie of a omparison

morphism oinides with any other possible hoie starting from E2.

II We obtain the assertion from assertion I immediately by dualization (see

Theorem 2.2.1(1)); here one should onsider the duals of C, D, and A (and

also 'dualize' the onneting funtors).

Remark 2.7.4. M is an isomorphism (starting from E2) also if: there exists a

loalization of D suh that H fatorizes through it, v indues a weight stru-

ture v′ on it, w indues a weight struture on the ategorial image of C that

oinides with the restrition of v′ to it (sine both weight spetral sequenes

are isomorphi to the spetral sequene orresponding to this new weight stru-

ture).
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Yet this onditions are somewhat restritive sine weight strutures do not

'desend' to loalizations in general (sine for an exat F ′ : C → E the lasses

F ′
∗(C

w≥1) and F ′
∗(C

w≤0) are not neessarily orthogonal in E).

In order to simplify heking right and left weight-exatness of funtors, we will

need the following easy statement.

Lemma 2.7.5. Let w be bounded.

1. An exat J : C → D is a right weight-exat whenever there exists a D ⊂
Cw=0

suh that any Y ∈ Cw=0
is a retrat of some X ∈ D, and that for any

X ∈ D we have J(Y ) ∈ Dv≥0
.

2. An exat J : C → D is a left weight-exat whenever there exists a D ⊂ Cw=0

suh that any Y ∈ Cw=0
is a retrat of some X ∈ D, and that for any X ∈ D

we have J(Y ) ∈ Dv≤0
.

Proof. It su�es to prove assertion 1, sine assertion 2 is exatly its dual.

If J is right weight-exat funtor, then we an take D = Cw=0

Now we prove the onverse statement. Sine Dv≥0
is Karoubi-losed and

extension-stable in D, Theorem 2.2.1(19) yields that J(Cw≥0) indeed belongs

to Dv≥0
.

3 Categories of comotives (main properties)

We embed DMeff
gm into a ertain big triangulated motivi ategory D; we will

all it objets omotives. We will need several properties of D; yet we will

never use its desription diretly. For this reason in �3.1 we only list the main

properties of D.

In �3.2 we assoiate ertain omotives to (disjoint unions of) 'in�nite interse-

tions' of smooth varieties over k (we all those pro-shemes). We also introdue

ertain Tate twists for these omotives.

In �3.3 we reall the de�nition of a primitive sheme (note that in the ase of

a �nite k we all a sheme primitive whenever it is smooth semi-loal). The

main motivi property of primitive shemes (proved by M. Walker) is: F (S)
injets into F (S0) if S is primitive onneted, S0 is its generi point, and F is

a homotopy invariant presheaf with transfers.

In �3.4 we study the relation of (omotives of) primitive shemes with the

homotopy t-struture for DMeff
− .

In �3.5 we prove that there are no D-morphisms of positive degrees between

omotives of primitive shemes (and also ertain Tate twists of those); this is

also true for produts of omotives mentioned.

In �3.6 we prove that one an pass to ountable homotopy limits in Gysin

distinguished triangles; this yields Gysin distinguished triangles for omotives

of pro-shemes. This allows to onstrut ertain Postnikov towers for omotives

of pro-shemes (and their Tate twists), whose fators are twisted produts of

omotives of funtion �elds (over k). The onstrution of the tower is parallel

to the lassial onstrution of oniveau spetral sequenes (see �1 of [8℄).
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3.1 Comotives: an ’axiomatic description’

We will de�ne D below as the derived ategory of di�erential graded funtors

J → B(Ab); here J yields a di�erential graded enhanement of DMeff
gm (f. [4℄,

[19℄, or [7℄), B(Ab) is the di�erential graded ategory of omplexes over Ab.
We will also need some ategory D

′
that projets to D (a ertain model of D).

Derived ategories of di�erential graded funtors were studied in detail in [12℄

and [16℄. We will de�ne and study them in �5 below; now we will only list their

properties that are needed for the proofs of main statements.

Below we will also need ertain (�ltered) inverse limits several times. D is a

triangulated ategory; so it is no wonder that there are no nie limits in it. So

we onsider a ertain additive D
′
endowed with an additive funtor p : D′ → D.

We will all (the images of) inverse limits from D
′
homotopy limits in D.

The relation of D
′
with D is similar to the relation of C(A) with D(A). In

partiular, D
′
is losed with respet to all (small �ltered) inverse limits; we have

funtorial ones of morphisms in D
′
that are ompatible with inverse limits.

We will need some onventions and de�nitions introdued in Notation; in par-

tiular, I, L will be projetive systems; I is ountable.

Proposition 3.1.1. 1. There exists a triangulated ategory D ⊃ DMeff
gm ;

all objets of DMeff
gm are oompat in D.

2. There exists an additive ategory D
′
losed with respet to arbitrary (small

�ltered) inverse limits, and an additive funtor p : D′ → D that preserves

(small) produts. Moreover, p is surjetive on objets.

3. D
′
is endowed with a ertain invertible shift funtor [1] that is ompatible

with the shift on D and respets inverse limits.

4. There is a funtorial one of morphisms in D
′
de�ned; it is ompatible

with [1] and respets inverse limits.

5. Any triangle of the form X
f
→ Y → Cone(f) → X[1] in D

′
beomes

distinguished in D.

6. The omposition funtor Mgm : Cb(SmCor) → DMeff
gm → D an be

anonially fatorized through an additive funtor j : Cb(SmCor)→ D
′
.

Shifts and ones of morphisms in Cb(SmCor) are ompatible with those

in D
′
via j.

7. For any X ∈ Mgm(Cb(SmCor)) ⊂ ObjD, any Y : L → D
′
we have

D(p(lim
←−l∈L

Yl), X) = lim
−→l∈L

D(p(Yl), X).

8. DMeff
gm weakly ogenerates D (i.e. we have

⊥DMeff
gm = {0}, see Nota-

tion).
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9. Let a sequene in ∈ I, n > 0, be inreasing (i.e. in+1 > in for any n > 0)
unbounded (see Notation). Then for all funtors X : I → D

′
, we have

funtorial distinguished triangles in D:

p(lim
←−i∈I

Xi)→ p(
∏

Xin)
e
→ p(

∏
Xin); (27)

e is the produt of idXin
⊕−φn : Xin+1

→ Xin ; here φn are the morphisms

oming from I via X.

10. There exists a di�erential graded enhanement for D; see �5.1 below.

Remark 3.1.2. 1. Sine below we will prove some statements for D only using

its 'axiomatis' (i.e. the properties listed in Proposition 3.1.1), these results

would also be valid in any other ategory that ful�lls these properties. This

ould be useful, sine the author is not sure at all that all possible D are

isomorphi.

2. Moreover, one ould modify the axiomatis of D and onsider instead a

ategory that would only ontain the triangulated subategory of DMeff
gm gen-

erated by motives of smooth varieties of dimension ≤ n (for a �xed n > 0).
Our results and arguments below an be easily arried over to this setting (with

minor modi�ations; it is also useful here to weaken ondition 8 in the Propo-

sition). This makes sense sine these 'geometri piees' of DMeff
gm are self-dual

with respet to Poinare duality (at least, if char k = 0); see �6.4 below. See

also Remark 4.5.2(2).

Alternatively, we an weaken the ondition for the funtor DMeff
gm → D to be

a full embedding. For example, it ould be interesting to onsider the version

of D for whih this funtor kills DMeff
gm (n) (for some �xed n > 0).

Lastly note that we do not really need ondition 2 in its full generality (below).

Now we derive some onsequenes from the axiomatis listed.

Corollary 3.1.3. 1. For any Z ∈ ObjDMeff
gm ⊂ ObjD, any X : L → D

′

we have D(p(lim
←−l∈L

Xl), Z) = lim
−→l∈L

D(p(Xl), Z).

2. For any T ∈ ObjD, all funtors Y : I → D
′
we have funtorial short

exat sequenes

{0} → lim
←−

1
D(T, p(Yi)[−1])→ D(T, p(lim

←−
Yi))→ lim

←−
D(T, p(Yi))→ {0};

here lim
←−

1
is the (�rst) derived funtor of lim

←−
= lim
←−I

.

3. For all funtors X : L → Cb(SmCor), Y : I → Cb(SmCor), we have

funtorial short exat sequenes

{0} → lim
←−

1

i∈I
(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)[−1]))→

D(p(lim
←−l∈L

j(Xl)), p(lim←−i∈I
j(Yi)))→

lim
←−i∈I

(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)))→ {0}.

(28)
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4. D is idempotent omplete.

Proof. 1. If Z ∈ Mgm(Cb(SmCor)), then the assertion is exatly Proposi-

tion 3.1.1(7).

It remains to note that any Z ∈ ObjDMeff
gm is a retrat of some objet

oming from Cb(SmCor).

2. Sine inverse limits and their derived funtors do not hange when we

replae a projetive system by any unbounded subsystem, we an assume

that L onsists of some in as in (27).

Now, (27) yields a long exat sequene

· · · →
∏

i∈I

D(T, p(Yi)[−1])
f
→

∏

i∈I

D(T, p(Yi)[−1])→ D(T, p(lim
←−i∈I

Yi))

→
∏

i∈I

D(T, p(Yi))
g
→

∏

i∈I

D(T, p(Yi))→ . . . ,

here f and g are indued by e in (27).

It is easily seen that Ker g ∼= lim
←−

D(T,Mgm(Ym)).

Lastly, Remark A.3.6 of [21℄ allows to identify Coker f with

lim
←−

1
D(T,Mgm(Ym)[−1]).

3. Immediate from the previous assertions.

4. SineD
′
is losed with respet to all inverse limits, it is losed with respet

to all (small) produts. Then Proposition 3.1.1(2) yields that D is also

losed with respet to all produts. Now, Remark 1.6.9 of [21℄ yields the

result (in fat, the proof uses only ountable produts).

We will often all the objets of D omotives.

3.2 Pro-schemes and their comotives

Now we have ertain inverse limits for objets (oming from) Cb(SmCor);
this allows to de�ne (reasonable) omotives for ertain shemes that are not

(neessarily) of �nite type over k (and for their disjoint unions). We also de�ne

ertain Tate twists of those.

We will all ertain ind-shemes over k pro-shemes. An ind-sheme V/k is

a pro-sheme if it is a ountable disjoint union of shemes, suh that eah of

them is a projetive limit of smooth varieties of dimension ≤ cV for some �xed

cV ≥ 0 (in the ategory of shemes) with onneting morphisms being open

dense embeddings. One may say that a pro-sheme is a ountable disjoint union

of ountable intersetions of smooth varieties. Note that (the spetrum of) any

funtion �eld over k is a pro-sheme; any smooth k-variety is a pro-sheme also.
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We have the operation of ountable disjoint union for pro-shemes of bounded

dimension.

Now, we would like to present a (not neessarily onneted) pro-sheme V
as projetive limits of smooth varieties Vi. This is easy if V is onneted

(f. Lemma 3.2.9 of [9℄). In the general ase one should allow (formally)

zero morphisms between onneted omponents of Vi (for distint i). So we

onsider a new ategory SmV ar′ ontaining the ategory of all smooth va-

rieties as a (non-full!) subategory. We take ObjSmV ar′ = SmV ar; for

any smooth onneted varieties X,Y ∈ SmV ar we have SmV ar′(X,Y ) =
MorV ar(X,Y ) ∪ {0}; the omposition of a zero morphism with any other one

is zero; SmV ar′(⊔iXi,⊔jYj) = ⊔i,jSmV ar′(Xi, Yj). SmV ar′ an be embed-

ded into SmCor (ertainly, this embedding is not full).

We will write V = lim
←−

Vi (this is not possible in the ategory of ind-shemes,

but works in Pro−SmV ar′). Note that the set of onneted omponents of V
is the indutive limit of the orresponding sets for Vi.

Now, for any pro-sheme V = lim
←−

Vi, any s ≥ 0, we introdue the following

notation: Mgm(V )(s) = p(lim
←−

(j(Vi)(s))) ∈ ObjD (see Proposition 3.1.1); we

will denote Mgm(V )(0) by Mgm(V ) and all Mgm(V ) the omotif of V . This

notation should be onsidered as formal i.e. we do not de�ne Tate twists on D

(till �5.4.3).

Obviously, if V ∈ SmV ar, its omotif (and its twists) oinides with its motif

(and its twists), so we an use the same notation for them.

If A is a ategory losed with respet to �ltered diret limits, H ′ : DMeff
gm → A

is a funtor, we an (formally) extend it to o-motives in question; we set:

H(Mgm(V )(s)[n]) = lim
−→

H ′(Mgm(Vi)(s)[n]). (29)

Remark 3.2.1. 1. For a general H ′
this notation should be onsidered as for-

mal. Yet in the ase H ′ = (−, Y ) : D → Ab, Y ∈ ObjDMeff
gm ⊂ ObjD, we

have H(Mgm(V )(i)[n]) = D(Mgm(V )(i)[n], X); see Corollary 3.1.3(1), i.e. (29)

yields the value of a well-de�ned funtor D → Ab at Mgm(V )(s)[n]. We will

only need H ′
of this sort till �4.3.

More generally, there exists suh an H if A satis�es AB5 and H ′
is ohomo-

logial; we will all the orresponding H an extended ohomology theory, see

Remark 4.3.2 below.

2. Let V j
be a ountable set of pro-shemes (of bounded dimensions). Then

Mgm(⊔V j) =
∏

Mgm(V j) by Proposition 3.1.1(2).

Besides, for any H ′
as in (29) we have H(Mgm(⊔V j)(s)[n]) =⊕

H(Mgm(V j)(s)[n]).

Below we will need some onventions for pro-shemes.

For pro-shemes U = lim
←−

Ui and V = lim
←−

Vj we will all an element of

lim
←−i∈I

(lim
−→j∈J

SmCor(Ui, Vj)) an open embedding if it an be obtained as a

double limit of open embeddings Ui → Vj (as varieties). If U = V \ W for

some pro-sheme W , we will say that W is a losed sub-pro-sheme of V . Note

that in this ase any onneted omponent of W is a losed subsheme of some
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onneted omponent of V ; yet some omponents of V ould ontain an in�nite

set of onneted omponents of W .

For V = ⊔V j
, V j

are onneted pro-shemes, we will all the maximum of the

transendene degrees of funtion �elds of V j
the dimension of V (note that

this is �nite). We will say that a sub-pro-sheme U = ⊔Um
, Um

are onneted,

is everywhere of odimension r (resp. ≥ r, for some �xed r ≥ 0) in V = ⊔V j

if for every indued embedding Um → V j
the di�erene of their dimensions

(de�ned as above) is r (resp. ≥ r).

We will all the inverse limit of the sets of points of Vi of a �xed odimension

s ≥ 0 the set of points of V of odimension s (note that any element of this set

indeed de�nes a point of some onneted omponent of V ).

3.3 Primitive schemes: reminder

In [29℄ M. Walker proved that primitive shemes in the ase of an in�nite k
have 'motivi' properties similar to those of smooth semi-loal shemes (in the

sense of �4.4 of [26℄). Sine we don't want to disriminate the ase of a �nite

k, we will modify slightly the standard de�nition of primitive shemes.

Definition 3.3.1. If k is in�nite then a (pro-)sheme is alled primitive if all of

its onneted omponents are a�ne and their oordinate rings Rj satisfy the fol-

lowing primitivity riterion: for any n > 0 every polynomial in Rj [X1, . . . , Xn]
whose oe�ients generate Rj as an ideal over itself, represents an Rj-unit.

If k is �nite, then we will all a pro-sheme primitive whenever all of its on-

neted omponents are semi-loal (in the sense of �4.4 of [26℄).

Remark 3.3.2. Reall that in the ase of in�nite k all semi-loal k-algebras
satisfy the primitivity riterion (see Example 2.1 of [29℄).

Below we will mostly use the following basi property of primitive shemes.

Proposition 3.3.3. Let S be a primitive pro-sheme, let S0 be the olletion

of all of its generi points; F is a homotopy invariant presheaf with transfers.

Then F (S) ⊂ F (S0); here we de�ne F on pro-shemes as in (29).

Proof. We an assume that S is onneted (so it is a smooth primitive sheme).

Hene in the ase of in�nite k our assertion follows from Theorem 4.19 of [29℄.

Now, if k is �nite, then S0 is semi-loal (by our onvention); so we may apply

Corollary 4.18 of [26℄ instead.

3.4 Basic motivic properties of primitive schemes

We will all a primitive pro-sheme just a primitive sheme. We prove ertain

motivi properties of primitive shemes (in the form in whih we will need them

below).
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Proposition 3.4.1. For F ∈ ObjDMeff
− we de�ne H ′(−) = DMeff

− (−, F )
on DMeff

gm ; we also de�ne H(Mgm(V )(i)[n]) as in (29). Let S be a primitive

sheme, m ≥ 0, i ∈ Z.

1. Let F ∈ DMeff
−

t≤−1
(t is the homotopy t-struture, that we onsidered in

�1.3). Then H(Mgm(S)(m)[m]) = {0}.

2. More generally, for any F ∈ ObjDMeff
− we have H([Mgm(S)(m)[m]) ∼=

F 0
−m(S) where F 0 = F t=0

, F 0
−m is the m-th Tate twist of F 0

(see De�nition

1.4.1).

Proof. 1. We onsider the homotopy invariant presheaf with transfers F−m :
X 7→ DMeff

− (Mgm(X)(m)[m], F ). We should prove that F−m(S) = 0 (here

we extend F−m to pro-shemes in the usual way i.e. as in (29)).

(29) also yields that F−m(⊔Si) =
⊕

F−m(Si). Hene by Proposition 3.3.3,

it su�es to onsider the ase of S being (the spetrum of) a funtion �eld

over k. Sine F−m is represented by an objet of DMeff
−

t≤−1
(see Proposition

1.4.2(2)), it su�es to note that any �eld is a Henselian sheme i.e. a point in

the Nisnevih topology.

2. By Proposition 1.4.2, for any X ∈ SmV ar we have Mgm(X)(m)[m] ⊥

DMeff
−

t≥1
. Hene we an assume F ∈ DMeff

−
t≤0

.

Next, using assertion 1, we an easily redue the situation to the ase F =
F t=0 ∈ ObjHI (by onsidering the t-deomposition of F [−1]). In this ase the

statement is immediate from Proposition 1.4.2(1).

Lemma 3.4.2. Let U → U ′
be an open dense embedding of smooth varieties.

1. We have Cone(Mgm(U)→Mgm(U ′)) ∈ DMeff
−

t≤−1
.

2. Let S be primitive. Then for any n,m, i ≥ 0 the map

D(Mgm(S)(m)[m],Mgm(U)(n)[n+i])→ D(Mgm(S)(m)[m],Mgm(U ′)(n)[n+i])

is surjetive.

Proof. 1. We denote Cone(Mgm(U) → Mgm(U ′)) ∈ DMeff
−

t≤−1
by C. Ob-

viously, C ∈ DMeff
−

t≤0
. Let H denote Ct=0

(H ∈ ObjHI). By Corol-

lary 4.19 of [26℄, we have H(U) ⊂ H(U ′). Next, from the long exat se-

quene {0}(= DMeff
− (Mgm(U)[1], H)) → DMeff

− (C,H) → DMeff
− (U ′, H) →

DMeff
− (U,H) → . . . we obtain C ⊥ H. Then the long exat sequene

· · · → DMeff
− (Ct≤−1[2], H) → DMeff

− (H,H) → DMeff
− (C,H) → . . . yields

H = 0.

2. It su�es to hek that Mgm(S)(m)[m] ⊥ C(n)[n+ i]. Sine Mgm(U)(n)[n]
is anonially a retrat of Mgm(U ×Gn

m), we an assume that n = 0.

Now the laim follows immediately from assertion 1 and Proposition 3.4.1(1).
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3.5 On morphisms between comotives of primitive schemes

We will need the fat that ertain 'positive' morphism groups are zero.

Let n,m,≥ 0, i > 0, Y = lim
←−

Yl (l ∈ L), be any pro-sheme, X be a primitive

sheme.

Proposition 3.5.1. 1. The natural homomorphism

D(Mgm(X)(m)[m],Mgm(Y )[n](n))→

→ lim
←−l

(lim
−→X⊂Z,Z∈SmV ar

DMeff
gm (Z(m)[m],Mgm(Yl)(n)[n]))

is surjetive.

2. Mgm(X)(m)[m] ⊥Mgm(Y )[n+ i](n).

Proof. Note �rst that by the de�nition of the Tate twist (1), it an be lifted to

Cb(SmCor).

1. This is immediate from the short exat sequene (28).

2. By Remark 3.2.1(2), we may suppose that Y is onneted. Then

we apply (28) again. The orresponding lim
←−

-term is zero by Propo-

sition 3.4.1(1). Lastly, the surjetivity proved in Lemma 3.4.2(2)

yields that the orresponding lim
←−

1
-term is zero. Indeed, the groups

D(Mgm(X)(m)[m],Mgm(Yl)[n + i − 1](n)) obviously satisfy the Mittag-

Le�er ondition; see �A.3 of [21℄.

In fat, one ould easily dedue the assertion from the results of the

previous subsetion and (27) diretly (we do not need muh of the theory

of higher limits in this paper).

Remark 3.5.2. In fat, this statement, as well as all other properties of (prim-

itive) pro-shemes that we need, are also true for not neessary ountable dis-

joint unions of (primitive) pro-shemes. This observation ould be used to

extend the main results of the paper to a somewhat larger ategory; yet suh

an extension does not seem to be important.

3.6 The Gysin distinguished triangle for pro-schemes; ’Gersten’

Postnikov towers for comotives of pro-schemes

We prove that we an pass to ountable homotopy limits in Gysin distinguished

triangles.

Proposition 3.6.1. Let Z,X be pro-shemes, Z a losed subsheme of X
(everywhere) of odimension r. Then for any s ≥ 0 the natural morphism

Mgm(X \ Z)(s) → Mgm(X)(s) extends to a distinguished triangle (in D):

Mgm(X \ Z)(s)→Mgm(X)(s)→Mgm(Z)(r + s)[2r].
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Proof. First assume s = 0.
We an assume X = lim

←−
Xi, Z = lim

←−
Zi for i ∈ I, where Xi, Zi ∈ SmV ar, Zi

is losed everywhere of odimension r in Xi for all i ∈ I.
We take Yi = j(Xi \ Zi → Xi), Y = p(lim

←−i∈I
Yi). By parts 4 and 5 of Proposi-

tion 3.1.1 we have a distinguished triangle Mgm(X \ Z)→Mgm(X)→ Y .

It remains to prove that Y ∼= Mgm(Z)(r)[2r]. Proposition 2.4.5 of [9℄ (a

funtorial form of the Gysin distinguished triangle for Voevodsky's motives)

yields that p(Yi) ∼= Mgm(Zi)(r)[2r]; moreover, the onneting morphisms

p(Yi) → p(Yi+1) are obtained from the orresponding morphisms Mgm(Zi) →
Mgm(Zi+1) by tensoring by Z(r)[2r]. It remains to reall: by Proposition

3.1.1(9), the isomorphism lass of a homotopy limit in D an be ompletely

desribed in terms of (objets and morphisms) of D (i.e. we don't have to

onsider the lifts of objets and morphisms to D
′
). This yields the result.

Now, sine Mgm(X × Gm) = Mgm(X)
⊕

Mgm(X)(1)[1] for any X ∈ SmV ar
(hene this is also true for pro-shemes), the assertion for the ase s = 0 yields

the general ase easily.

Now we will onstrut a ertain Postnikov tower Po(X) for X being the

(twisted) omotif of a pro-sheme Z that will be related to the oniveau spe-

tral sequenes (for ohomology) of Z; our method was desribed in �1.5 above.

Note that we onsider the general ase of an arbitrary pro-sheme Z (sine

in this paper pro-shemes play an important role); yet this ase is not muh

distint from the (partial) ase of Z ∈ SmV ar.

Corollary 3.6.2. We denote the dimension of Z by d (reall the onventions

of �3.2).

For all i ≥ 0 we denote by Zi
the set of points of Z of odimension i.

For any s ≥ 0 there exists a Postnikov tower for X = Mgm(Z)(s)[s] suh that

l = 0, m = d+ 1, Xi
∼=

∏
z∈Zi Mgm(z)(i+ s)[2i+ s].

Proof. As above, it su�es to prove the statement for s = 0. Sine any produt
of distinguished triangles is distinguished, we an assume Z to be onneted.

We onsider a projetive system L whose elements are sequenes of losed

subshemes ∅ = Zd+1 ⊂ Zd ⊂ Zd−1 ⊂ · · · ⊂ Z0. Here Z0 ∈ SmV ar, Zl ∈
V ar for l > 0, Z is open in Z0 (see �3.2; Z0 is onneted; in the ase when

Z ∈ SmV ar we only take Z0 = Z); for all j > 0 we have: Zj is everywhere of

odimension ≥ j in Z0; all irreduible omponents of all Zj are everywhere of

odimension ≥ j in Z0; and Zj+1 ontains the singular lous of Zj (for j ≤ d).
The ordering in L is given by open embeddings of varieties Uj = Z0 \ Zj for

j > 0. For l ∈ L we will denote the orresponding sequene by ∅ = Zl
d+1 ⊂

Zl
d ⊂ Zl

d−1 ⊂ · · · ⊂ Zl
0. Note that L is ountable!

By the previous proposition, for any j we have a distinguished triangle

Mgm(lim
←−

(Zl
0 \ Z

l
j))→Mgm(lim

←−
(Zl

0 \ Z
l
j+1))→Mgm(lim

←−
(Zl

j \ Z
l
j+1)(j)[2j]).

It remains to ompute the last term; we �x some j.
We have lim

←−l∈L′
(Zl

j \Z
l
j+1))

∼=
∏

z∈Zi Mgm(z). Indeed, for all l ∈ L the variety

Zl
j \ Z

l
j+1 is the disjoint union of some loally losed smooth subshemes of
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Zl
0 of odimension j; for any z0 ∈ Zj

for l ∈ L large enough z0 is ontained

in Zl
j \ Z

l
j+1 as an open sub-pro-sheme, and the inverse limit of onneted

omponents of Zl
j \ Z

l
j+1 ontaining z0 is exatly z0. Now, we an apply the

funtor X 7→ Mgm(X)(j)[2j] to this isomorphism. We obtain Mgm(lim
←−

(Zl
j \

Zl
j+1)(j)[2j])

∼=
∏

z∈Zi Mgm(z)(i). This yields the result.

Remark 3.6.3. 1. Alternatively, one ould onstrut Po(X) for the (twisted)

omotif of a pro-sheme T = lim
←−

T l
as the inverse limit of the Postnikov towers

for T l
(onstruted as above yet with �xed Zl

0 = T l
); ertainly, to this end one

should pass to the limit in D
′
. It is easily seen that one would get the same

tower this way.

2. Certainly, if we shift a Postnikov tower for Mgm(Z)(s)[s] by [j] for some

j ∈ Z, we obtain a Postnikov tower for Mgm(Z)(s)[s+ j]. We didn't formulate

assertion 2 for these shifts only beause we wanted Xp
to belong to D

w=0
s (see

Proposition 4.1.1 below).

3. Sine the alulation of Xi
used Proposition 3.1.1(9), our method annot

desribe onneting morphisms between them (in D). Yet one an alulate

the 'images' of the onneting morphisms in D
naive

; see �1.5 and �6.1.

4 Main motivic results

The results of the previous setion ombined with those of �2.2 allow us to

onstrut (in �4.1) a ertain Gersten weight struture w on a ertain triangu-

lated Ds: DMeff
gm ⊂ Ds ⊂ D. Its main property is that omotives of funtion

�elds over k (and their produts) belong to Hw. It follows immediately that

the Postnikov tower Po(X) provided by Corollary 3.6.2 is a weight Postnikov

tower with respet to w. Using this, in �4.2 we prove: if S is a primitive sheme,

S0 is its dense sub-pro-sheme, then Mgm(S) is a diret summand of Mgm(S0);
Mgm(K) (for a funtion �eld K/k) ontains (as retrats) omotives of primitive

shemes whose generi point is K, as well as twisted omotives of residue �elds

of K (for all geometri valuations).

In �4.3 we (easily) translate these results to ohomology; in partiular, the

ohomology of (the spetrum of) K ontains diret summands orresponding

to the ohomology of primitive shemes whose generi point is K, as well as

twisted ohomology of residue �elds of K. Here one an onsider any oho-

mology theory H : Ds → A; one an obtain suh an H by extending to Ds

any ohomologial H ′ : DMeff
gm → A if A satis�es AB5 (by means of Propo-

sition 1.2.1). Note: in this ase the ohomology of pro-shemes mentioned is

alulated in the 'usual' way.

In �4.4 we onsider weight spetral sequenes orresponding to (the Gersten

weight struture) w. We observe that these spetral sequenes generalize natu-

rally the lassial oniveau spetral sequenes. Besides, for a �xed H : Ds → A
our (generalized) oniveau spetral sequene onverging to H∗(X) (where X
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ould be a motif or just an objet of Ds) is Ds-funtorial in X (i.e. it is mo-

tivially funtorial for objets of DMeff
gm ); this fat is non-trivial even when

restrited to motives of smooth varieties.

In �4.5 we prove that there exists a nie duality D
op×DMeff

− → Ab (extending

the bi-funtor DMeff
− (−,−) : DMeff

gm
op ×DMeff

− → Ab); the Gersten weight

struture w (on Ds) is left orthogonal to the homotopy t-struture t on DMeff
−

with respet to it. This allows to apply Theorem 2.6.1: in the ase when H
omes from Y ∈ ObjDMeff

− we prove the isomorphism (starting from E2)

of (the oniveau) T (H,X) with the spetral sequene orresponding to the t-

trunations of Y . We desribe ObjDMeff
gm ∩D

w≤i
s in terms of t (for DMeff

− ).

We also note that our results allow to desribe torsion motivi ohomology in

terms of (torsion) étale ohomology (see Remark 4.5.4(4)).

In �4.6 we de�ne the oniveau spetral sequene (starting from E2) for oho-

mology of a motif X over a not (neessarily) ountable perfet base �eld l as the
limit of the orresponding oniveau spetral sequenes over ountable perfet

sub�elds of de�nition for X. This de�nition is ompatible with the lassial one

(for X being the motif of a smooth variety); so we obtain motivi funtoriality

of lassial oniveau spetral sequenes over a general base �eld.

In �4.7 we prove that the Chow weight struture for DMeff
gm (introdued in �6

of [6℄) ould be extended to D (ertainly, the orresponding weight struture

wChow di�ers from w). We will all the orresponding weight spetral sequenes

Chow-weight ones; note that they are isomorphi to lassial (i.e. Deligne's)

weight spetral sequenes when the latter are de�ned.

In �4.8 we use the results �2.7 to ompare oniveau spetral sequenes with

Chow-weight ones. We always have a omparison morphism; it is an isomor-

phism if H is a birational ohomology theory.

In �4.9 we onsider the ategory of birational omotives Dbir (a ertain 'om-

pletion' of birational motives of [15℄) i.e. the loalization of D by D(1). It

turns our that w and wChow indue the same weight struture w′
bir on Dbir.

Conversely, starting from w′
bir one an glue 'from slies' the weight strutures

indued by w and wChow on D/D(n) for all n > 0. Furthermore, these stru-

tures belong to an interesting family of weight strutures indexed by a single

integral parameter; other terms of this family ould be also interesting!

4.1 The Gersten weight structure for Ds ⊃ DMeff
gm

Now we desribe the main weight struture of this paper. Unfortunately, the

author does not know whether it is possible to de�ne the Gersten weight stru-

ture (see below) on the whole D. Yet for our purposes it is quite su�ient to

de�ne the orresponding weight struture on a ertain triangulated subategory

Ds ⊂ D ontaining DMeff
gm (and omotives of all pro-shemes).

In order to make the hoie of Ds ⊂ D ompatible with extensions of salars,

we bound ertain dimensions of objets of Hw.
We will denote by H the full subategory of D whose objets are all ountable

produts

∏
l∈L Mgm(Kl)(nl)[nl]; here Kl are (the spetra of) funtion �elds
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over k, nl ≥ 0; we assume that the transendene degrees of Kl/k and nl are

bounded.

Proposition 4.1.1. 1. Let Ds be the Karoubi-losure of 〈H〉 in D. Then

C = Ds an be endowed with a unique weight struture w suh that Hw ontains

H.

2. Hw is the idempotent ompletion of H.

3. Ds ontains DMeff
gm as well as all Mgm(Z)(l) for Z being a pro-sheme,

l ≥ 0.
4. For any primitive S, i ≥ 0, we have Mgm(S)(i)[i] ∈ D

w=0
s .

5. Let Z be a pro-sheme, s ≥ 0. Then Mgm(Z)(s)[s] ∈ D
w≤0
s ; the Postnikov

tower for Mgm(Z)(s)[s] given by Corollary 3.6.2 is a weight Postnikov tower

for it.

Proof. 1. By Proposition 3.5.1(2), H is negative (sine any objet of H is

a �nite sum of Mgm(Xi)(mi) for some primitive pro-shemes Xi, mi ∈ Z).

Besides, D is idempotent omplete (see Corollary 3.1.3(4)); heneDs andD
w=0
s

also are. Hene we an apply Theorem 2.2.1(18) (for D = H).

2. Also immediate from Theorem 2.2.1(18).

3. Mgm(Z)(l) ∈ ObjDs by Corollary 3.6.2; in partiular, this is true for Z ∈
SmV ar. It remains to note that DMeff

gm is the Karoubization of 〈Mgm(U) :
U ∈ SmV ar〉 in D.

4. It su�es to note that Mgm(S)(i)[i] belongs both to D
w≤0
s and to D

w≥0
s by

Theorem 2.2.1(20). Here we use Proposition 3.5.1(2) again.

5. We have Xi ∈ D
w=0
s . Hene Theorem 2.2.1(14) yields the result. Note here

that we have Y0 = 0 in the notation of De�nition 2.1.2(9).

We will all w the Gersten weight struture, sine it is losely onneted with

Gersten resolutions of ohomology (f. �4.5 below). By default, below w will

denote the Gersten weight struture.

Remark 4.1.2. 1. Hw is idempotent omplete sine Ds is.

2. In fat, one ould easily prove similar statements for C being just 〈H〉
(instead of its Karoubization in D). Certainly, for this version of C we will

only have C ⊃ Mgm(Kb(SmCor)).
Besides, note that for any funtion �eldK ′/k, any r ≥ 0, there exists a funtion
�eld K/k suh that Mgm(K ′)(r)[r] is a retrat of Mgm(K) (see Corollary 4.2.2

below). Hene it su�es take H being the full subategory of D whose objets

are

∏
l∈L Mgm(Kl) (for bounded transendene degrees of Kl/k).

3. The proposition implies that Ds is exatly the Karoubization in D of the

triangulated ategory generated by omotives of all pro-shemes.

4. The author does not know whether one an desribe weight deompositions

for arbitrary objets of DMeff
gm expliitly. Still, one an say something about

these weight deompositions and weight omplexes using their funtoriality

properties. In partiular, knowing weight omplexes for X,Y ∈ ObjDMeff
gm

(or just ∈ ObjDMs
) one an desribe the weight omplex of X → Y up to a
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homotopy equivalene as the orresponding one (see Lemma 6.1.1 below). Be-

sides, let X → Y → Z be a distinguished triangle (in D). Then for any hoie

of (Xw≤0, Xw≥1) and (Zw≤0, Zw≥1) there exists a hoie of (Y w≤0, Y w≥1)
suh that there exist distinguished triangles Xw≤0 → Y w≤0 → Zw≤0

and

Xw≥1 → Y w≥1 → Zw≥1
; see Lemma 1.5.4 of [6℄. In partiular, we obtain that

j maps omplexes (over SmCor) onentrated in degrees ≤ j into D
w≤j
s (we

will prove a stronger statement in Remark 4.5.4(4) below). If X ∈ ObjDMeff
gm

omes from a omplex over SmCor whose onneting morphisms satisfy ertain

odimension restritions, these observations ould be extended to an expliit

desription of a weight deomposition for it; f. �7.4 of [6℄.

4.2 Direct summand results for comotives

Proposition 4.1.1 easily implies the following interesting result.

Theorem 4.2.1. 1. Let S be a primitive sheme; let S0 be its dense sub-pro-

sheme. Then Mgm(S) is a diret summand of Mgm(S0).
2. Suppose moreover that S0 = S \ T where T is a losed subsheme

of S everywhere of odimension r > 0. Then we have Mgm(S0) ∼=
Mgm(S)

⊕
Mgm(T )(r)[2r − 1].

Proof. We an assume that S and S0 are onneted.

1. By Proposition 4.1.1(5), we have: Mgm(S0),Mgm(S) ∈ D
w≤0
s ;

Mgm(Spec(k(S))) ould be assumed to be the zeroth term of their weight

omplexes for a hoie of weight omplexes ompatible with some negative

Postnikov weight towers for them; the embedding S0 → S is ompatible with

idMgm(Spec(k(S))) (sine we have a ommutative triangle Spec k(S) → S0 → S
of pro-shemes). Hene Theorem 2.2.1(16) yields the result.

2. By Proposition 3.6.1 we have a distinguished triangle Mgm(S0) →
Mgm(S) → Mgm(T )(r)[2r]. By parts 4 and 5 of Proposition 4.1.1 we have

Mgm(S0) ∈ D
w≤0
s , Mgm(S) ∈ D

w=0
s , Mgm(T )(r)[2r] ∈ D

w≤−r
s ⊂ D

w≤−1
s .

Hene Theorem 2.2.1(8) yields the result.

Corollary 4.2.2. 1. Let S be a onneted primitive sheme, let S0 be its

generi point. Then Mgm(S) is a retrat of Mgm(S0).
2. Let K be a funtion �eld over k. Let K ′

be the residue �elds for a geometri

valuation v of K of rank r. Then Mgm(K ′)(r)[r] is a retrat of Mgm(K).

Proof. 1. This is just a partial ase of part 1 of the the theorem.

2. Obviously, it su�es to prove the statement in the ase r = 1. Next, K is

the funtion �eld of some normal projetive variety over k. Hene there exists
a U ∈ SmV ar suh that: k(U) = K, v yields a non-empty losed subsheme

of U (sine the singular lous has odimension ≥ 2 in a normal variety). It

easily follows that there exists a pro-sheme S (i.e. an inverse limit of smooth

varieties) whose only points are the spetra of K and K0. So, S is loal, hene

it is primitive.
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By part 2 of the theorem, we have

Mgm(SpecK) = Mgm(S)
⊕

Mgm(SpecK0)(1)[1];

this onludes the proof.

Remark 4.2.3. 1. Note that we do not onstrut any expliit splitting mor-

phisms in the deompositions above. Probably, one annot hoose any anoni-

al splittings here (in the general ase); so there is no (automati) ompatibility

for any pair of related deompositions. Respetively, though omotives of (spe-

tra of) funtion �elds ontain tons of diret summands, there seems to be no

general way to deompose them into indeomposable summands.

2. Yet Proposition 3.6.1 easily yields that Mgm(Spec k(t)) ∼=
Z
⊕∏

E Mgm(E)(1)[1]; here E runs through all losed points of A
1
(on-

sidered as a sheme over k).

4.3 On cohomology of pro-schemes, and its direct summands

The results proved above immediately imply similar assertions for ohomology.

We also onstrut a lass of ohomology theories that respet homotopy limits.

Proposition 4.3.1. Let H : Ds → A be ohomologial, S be a primitive

sheme.

1. Let S0 be a dense sub-pro-sheme of S. Then H(Mgm(S)) is a diret sum-

mand of H(Mgm(S0)).
2. Suppose moreover that S0 = S \ T where T is a losed sub-

sheme of S of odimension r > 0. Then we have H(Mgm(S0)) ∼=
H(Mgm(S))

⊕
H(Mgm(T )(r)[2r − 1]).

3. Let S be onneted, S0 be the generi point of S. Then H(Mgm(S)) is a

retrat of H(Mgm(S0)) in A.
4. Let K be a funtion �eld over k. Let K ′

be the residue �eld for a geometri

valuation v of K of rank r. Then H(Mgm(K ′)(r)[r]) is a retrat of H(Mgm(K))
in A.
5. Let H ′ : DMeff

gm → A be a ohomologial funtor, let A satisfy AB5. Then

Proposition 1.2.1 allows to extend H ′
to a ohomologial funtor H : D → A

that onverts inverse limits in D
′
to the orresponding diret limits in A.

Proof. 1. Immediate from Theorem 4.2.1(1).

2. Immediate from Theorem 4.2.1(2).

3. Immediate from Corollary 4.2.2(1).

4. Immediate from Corollary 4.2.2(2).

5. Immediate from Proposition 1.2.1; note that DMeff
gm is skeletally small.

Here in order to prove that H onverts homotopy limits into diret limits we

use part I2 of lo.it. and Proposition 3.1.1(7).
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Remark 4.3.2. 1. In the setting of assertion 5 we will all H an extended

ohomology theory.

Note that for H ′ = DMeff
gm (−, Y ), Y ∈ ObjDMeff

gm , we have H = D(−, Y );
see (4).

2. Now reall that for any pro-sheme Z, any i ≥ 0, Mgm(Z)(i) (by de�nition)

ould be presented as a ountable homotopy limit of geometri motives. More-

over, the same is true for all small ountable produts of Mgm(Zl)(i). Hene

if H is extended, then the ohomology of

∏
Mgm(Zl)(i) is the orresponding

diret limit; this oinides with the de�nition given by (29) (f. Remark 3.2.1).

In partiular, one an apply the results of Proposition 4.3.1 to the usual étale

ohomology of pro-shemes mentioned (with values in Ab or in some ategory

of Galois modules).

3. If H ′
is also a tensor funtor (i.e. it onverts tensor produt in DMeff

gm into

tensor produts in D(A)), then ertainly the ohomology of Mgm(K ′)(r)[r] is
the orresponding tensor produt ofH∗(Mgm(K ′)) withH∗(Z(r)[r]). Note that
the latter one is a retrat of H∗(Gr

m); we obtain the Tate twist for ohomology

this way.

4.4 Coniveau spectral sequences for cohomology of (co)motives

Let H : Dop
s → A be a ohomologial funtor, X ∈ ObjDs.

Proposition 4.4.1. 1. Any hoie of a weight spetral sequene T (H,X) (see
Theorem 2.4.2) orresponding to the Gersten weight struture w is anonial

and Ds-funtorial in X starting from E2.

2. T (H,X) onverges to H(X).
3. Let H be an extended theory (see Remark 4.3.2), X = Mgm(Z) for

Z ∈ SmV ar. Then any hoie of T (H,X) starting from E2 is anonially

isomorphi to the lassial oniveau spetral sequene (onverging to the H-

ohomology of Z; see �1 of [8℄).

Proof. 1. This is just a partial ase of Theorem 2.4.2(I).

2. Immediate sine w is bounded; see part I2 of lo.it.

3. Reall that in the proof of Corollary 3.6.2 a ertain Postnikov tower

Po(X) for X was obtained from ertain 'geometri' Postnikov towers (in

j(Cb(SmCor))) by passing to the homotopy limit. Now, the oniveau spe-

tral sequene (for the H-ohomology of Z) in �1.2 of [8℄ was onstruted by

applyingH to the same geometri towers and then passing to the indutive limit

(in A). Furthermore, Remark 4.3.2(2) yields that the latter limit is (naturally)

isomorphi to the spetral sequene obtained via H from Po(X). Next, sine

Po(X) is a weight Postnikov tower for X (see Proposition 4.1.1(5)), we obtain

that the latter spetral sequene is one of the possible hoies for T (H,X).
Lastly, assertion 1 yields that all other possible T (H,X) (they depend on the

hoie of a weight Postnikov tower for X) starting from E2 are also anonially

isomorphi to the lassial oniveau spetral sequene mentioned.
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Remark 4.4.2. 1. Hene we proved (in partiular) that lassial oniveau

spetral sequenes (for ohomology theories that ould be fatorized through

motives; this inludes étale and singular ohomology of smooth varieties) are

DMeff
gm -funtorial (starting from E2); we also obtain suh a funtoriality for

the oniveau �ltration for ohomology! These fats are far from being obvious

from the usual de�nition of the oniveau �ltration and spetral sequenes, and

seem to be new (in the general ase). So, we justi�ed the title of the paper.

We also obtain ertain oniveau spetral sequenes for ohomology of singular

varieties (for ohomology theories that ould be fatorized through DMeff
gm ; in

the ase char k > 0 one also needs rational oe�ients here).

2. Assertion 3 of the proposition yields a nie reason to all (any hoie of)

T (H,X) a oniveau spetral sequene (for a general H,A, and X ∈ ObjDs);

this will also distinguish (this version of) T from weight spetral sequenes

orresponding to other weight strutures. We will give more justi�ation for

this term in Remark 4.5.4 below. So, the orresponding �ltration ould be

alled the (generalized) oniveau �ltration.

4.5 An extension of results of Bloch and Ogus

Now we want to relate oniveau spetral sequenes with the homotopy t-
struture (in DMeff

− ). This would be a vast extension of the seminal results of

�6 of [5℄ (i.e. of the alulation by Bloh and Ogus of the E2-terms of oniveau

spetral sequenes) and of �6 of [11℄.

We should relate t (for DMeff
− ) and w; it turns out that they are orthogonal

with respet to a ertain quite natural nie duality.

Proposition 4.5.1. For any Y ∈ ObjDMeff
− we extend H ′ = DMeff

− (−, Y )
from DMeff

gm to D ⊃ Ds by the method of Proposition 1.2.1; we de�ne

Φ(X,Y ) = H(X). Then the following statements are valid.

1. Φ is a nie duality (see De�nition 2.5.1).

2 w is left orthogonal to the homotopy t-struture t (on DMeff
− ) with respet

to Φ.
3. Φ(−, Y ) onverts homotopy limits (in D

′
) into diret limits in Ab.

Proof. 1. By Proposition 2.5.6(1), the restrition of Φ to DMeff
gm

op ×DMeff
−

is a nie duality. It remains to apply part 3 of lo.it.

2. In the notation of Proposition 2.5.3, we take for D the set of all small

produts

∏
l∈L Mgm(Kl)(nl)[nl] ∈ ObjDs; here Mgm(Kl) denote omotives of

(spetra of) some funtion �elds over k, nl ≥ 0 and the transendene degrees

of Kl/k are bounded (f. �4.1). Then D,Φ satisfy the assumptions of the

proposition by Proposition 3.4.1(2) (see also Remark 4.3.2(2)).

3. Immediate from Proposition 4.3.1(3).

Remark 4.5.2. 1. Suppose that we have an indutive family Yi ∈ ObjDMeff
−

onneted by a ompatible family of morphisms with some Y ∈ DMeff
− suh
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that: for any Z ∈ ObjDMeff
gm we have DMeff

− (Z, Y ) ∼= lim
−→

DMeff
− (Z, Yi) (via

these morphisms Yi → Y ). In suh a situation it is reasonable to all Y a

homotopy olimit of Yi.

The de�nition of Φ in the proposition easily implies: for anyX ∈ ObjD we have

Φ(X,Y ) = lim
−→

Φ(X,Yi). So, one may say that all objets of D are 'ompat

with respet to Φ', whereas part 3 of the proposition yields that all objets of

DMeff
− are 'oompat with respet to Φ'. Note that no analogues of these nie

properties an hold in the ase of an adjaent weight and t-struture (de�ned

on a single triangulated ategory).

2. Now, we ould have replaed DMeff
gm by DMgm everywhere in the 'axiomat-

is' of D (in Proposition 3.1.1). Then the orresponding ategory Dgm ould

be used for our purposes (instead of D), sine our arguments work for it also.

Note that we an extend Φ to a nie duality D
op
gm ×DMeff

− → Ab; to this end

it su�es for Y ∈ ObjDMeff
− to extend H ′

to DMgm in the following way:

H ′(X(−n)) = DMeff
− (X,Y (n)) for X ∈ ObjDMeff

gm ⊂ ObjDMgm, n ≥ 0.
Moreover, the methods of �5.4.3 allow to de�ne an invertible Tate twist funtor

on Dgm.

Corollary 4.5.3. 1. If H is represented by a Y ∈ ObjDMeff
− (via our Φ)

then for a (o)motif X our oniveau spetral sequene T (H,X) starting from E2

ould be naturally expressed in terms of the ohomology of X with oe�ients

in t-trunations of Y (as in Theorem 2.6.1).

In partiular, the oniveau �ltration for H∗(X) ould be desribed as in part 2

of lo.it.

2. For U ∈ ObjDMeff
gm , i ∈ Z, we have U ∈ D

w≤i
s ⇐⇒ U ∈ DMeff

−
t≤i

.

Proof. 1. Immediate from Proposition 4.5.1.

2. By Theorem 2.2.1(20), we should hek whether Z ⊥ U for any Z =∏
l∈L Mgm(Kl)(nl)[nl + r], where Kl are funtion �elds over k, nl ≥ 0

and the transendene degrees of Kl/k are bounded, r > 0 (see Proposi-

tion 4.1.1(2)). Moreover, sine U is oompat in D, it su�es to onsider

Z = Mgm(K ′)(n)[n + r] (K ′/k is a funtion �eld, n ≥ 0). Lastly, Corollary

4.2.2(2) redues the situation to the ase Z = Mgm(K) (K/k is a funtion

�eld).

Hene (25) implies: U ∈ D
w≤i
s whenever for any j > i, any funtion �eld K/k,

the stalk of U t=j
at K is zero. Now, if U ∈ DMeff

−
t≤i

then U t=j = 0 for all

j > i; hene all stalks of U t=j
are zero. Conversely, if all stalks of U t=j

at

funtion �elds are zero, then Corollary 4.19 of [26℄ yields U t=j = 0 (see also

Corollary 4.20 of lo.it.); if U t=j = 0 for all j > i then U ∈ DMeff
−

t≤i
.

Remark 4.5.4. 1. Our omparison statement is true for Y -ohomology of an

arbitraryX ∈ ObjDMeff
gm ; this extends to motives Theorem 6.4 of [11℄ (whereas

the latter essentially extends the results of �6 of [5℄). We obtain one more

reason to all T (in this ase) the oniveau spetral sequene for (ohomology

of) motives.
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2. If Y ∈ ObjHI, then E2(T ) yields the Gersten resolution for Y (when X
varies); this is why we alled w the Gersten weight struture.

3. Now, let Y represent étale ohomology with oe�ients in Z/lZ, l is prime to

char k (Y is atually unbounded from above, yet this is not important). Then

the t-trunations of Y represent Z/lZ-motivi ohomology by the (reently

proved) Beilinson-Lihtenbaum onjeture (see [28℄; this paper is not published

at the moment). Hene Proposition 2.5.4(1) yields some new formulae for Z/lZ-
motivi ohomology of X and for the 'di�erene' between étale and motivi

ohomology. Note also that the virtual t-trunations (mentioned in lo.it.)

are exatly the D2-terms of the alternative exat ouple for T (H,X) and for

the version of the exat ouple used in the urrent paper respetively (i.e.

we onsider exat ouples oming from the two possible versions for a weight

Postnikov tower for X, as desribed in Remark 2.1.3). See also �7.5 of [6℄ for

more expliit results of this sort. It ould also be interesting to study oniveau

spetral sequenes for singular ohomology; this ould yield a ertain theory of

'motives up to algebrai equivalene'; see Remark 7.5.3(3) of lo.it. for more

details.

5. Assertion 2 of the orollary yields that D
w≤0
s ∩ ObjDMeff

gm is large enough

to reover w (in a ertain sense); in partiular, this assertion is similar to

the de�nition of adjaent strutures (see Remark 2.5.7). In ontrast, D
w≥0
s ∩

ObjDMeff
gm seems to be too small.

4.6 Base field change for coniveau spectral sequences; functo-
riality for an uncountable k

It an be easily seen (and well-known) that for any perfet �eld extension l/k
there exist an extension of salars funtor DMeff

gm k → DMeff
gm l ompatible

with the extension of salars for smooth varieties (and for Kb(SmCor)). In

5.4.2 below we will prove that this funtor ould be expanded to a funtor

Extl/k : Dk → Dl that sends Mgm,k(X) to Mgm,l(Xl) for a pro-sheme X/k;
this extension proedure is funtorial with respet to embeddings of base �elds.

Moreover, Extl/k maps Dsk into Dsl. Note the existene of base hange for

omotives does not follow from the properties of D listed in Proposition 3.1.1;

yet one an de�ne base hange for our model of omotives (desribed in �5

below) and (probably) for any other possible reasonable version of D.

Now we prove that base hange for omotives yields base hange for oniveau

spetral sequenes; it also allows to prove that these spetral sequenes are

motivially funtorial for not neessary ountable base �elds.

In order to make the limit in Proposition 4.6.1(2) below well-de�ned, we assume

that for any X ∈ ObjDMeff
gm there is a �xed representative Y,Z, p hosen,

where: Z, Y ∈ Cb(SmCor), Mgm(Y ) ∼= Mgm(Z), p ∈ Cb(SmCor)(Y,Z) yields
a diret summand of Mgm(Y ) in DMeff

gm that is isomorphi to X. We also

assume that all the omponents of (X,Y, p) have �xed expressions in terms of

algebrai equations over k; so one may speak about �elds of de�nition for X.
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Proposition 4.6.1. Let l be a perfet �eld, H : Dl → A be any ohomologial

funtor (for an abelian A). For any perfet k ⊂ l we denote H◦Extl/k : Dk → A
by Hk.

1. Let l be ountable. Then for any X ∈ ObjDk the method of Proposition

2.7.3(II) yields some morphism Nl/k : Twk
(Hk, X) → Twl

(H,Extl/k(X)); this
morphism is unique and Dk-funtorial in X starting from E2.

The orrespondene (l, k) 7→ Nl/k is assoiative with respet to extensions of

ountable �elds (starting from E2); f. part I3 of lo.it.

2. Let l be a not (neessarily) ountable perfet �eld, let A satisfy AB5.

For X ∈ ObjDMeff
gm l we de�ne Tw(H,X) = lim

−→k
Twk

(Hk, Xk). Here we take

the limit with respet to all perfet k ⊂ l suh that k is ountable, X is de�ned

over k; the onneting morphisms are given by the maps N−/− mentioned in

assertion 1; we start our spetral sequenes from E2. Then Tw(H,X) is a

well-de�ned spetral sequene that is DMeff
gm l-funtorial in X.

3. If X = Mgm,l(Z), Z ∈ SmV ar, H is as an extended theory, and A sat-

is�es AB5, the spetral sequene given by the previous assertion is anonially

isomorphi to the lassial oniveau spetral sequene (for (H,Z); onsidered

starting from E2).

Proof. 1. By Proposition 2.7.3(II) it su�es to hek that Extl/k is left weight-

exat (with respet to weight strutures in question). We take D being the

lass of all small produts

∏
l∈L Mgm(Kl), where Mgm(Kl) denote omotives

of (spetra of) funtion �elds over k of bounded transendene degree. Propo-

sition 4.1.1 and Corollary 4.2.2(2) yield that any X ∈ Ds
w=0
k is a retrat of

some element of D. It su�es to hek that for any X =
∏

l∈L Mgm,k(Kl) we

have Extl/k X ∈ Ds
wl≤0
l ; here we reall that wk is bounded and apply Lemma

2.7.5.

Now, X is the omotif of a ertain pro-sheme, hene the same is true for

Extl/k X. It remains to apply Proposition 4.1.1(5).

2. By the assoiativity statement in the previous assertion, the limit is well-

de�ned. Sine A satis�es AB5, we obtain a spetral sequene indeed. Sine

we have k-motivi funtoriality of oniveau spetral sequenes over eah k, we
obtain l-motivi funtoriality in the limit.

3. Again (as in the proof of Proposition 4.4.1(3)) we reall that the lassial

oniveau spetral sequene for this ase is de�ned by applying H to 'geometri'

Postnikov towers (oming from elements of L as in the proof of Corollary 3.6.2)

and then passing to the limit (in A) with respet to L. Our assertion follows

easily, sine eah l ∈ L is de�ned over some perfet ountable k ⊂ l; the limit

of the spetral sequenes with respet to the subset of L de�ned over a �xed k
is exatly Twk

(Hk, Xk) sine H sends homotopy limits to indutive limits in A
(being an extended theory).

Here we ertainly use the funtoriality of T starting from E2.
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Remark 4.6.2. 1. For a general X ∈ ObjDMeff
gm we only have a anonial

hoie of base hange maps (for T (Hkl
, X)) starting from E2; this is why we

start our spetral sequene from the E2-level.

2. Assertion 2 of the proposition is also valid for any omotif de�ned over a

(perfet) ountable sub�eld of l. Unfortunately, this does not seem to inlude

omotives of funtion �elds over l (of positive transendene degrees, if l is not
ountable).

4.7 The Chow weight structure for D

Till the end of the setion, we will either assume that char k = 0, or that we
deal with motives, omotives, and ohomology with rational oe�ients (we

will use the same notation for motives with integral and rational oe�ients;

f. �6.3 below).

We prove that D supports a weight struture that extends the Chow weight

struture of DMeff
gm (see �6.5 and Remark 6.6.1 of [6℄, and also [7℄).

In this subsetion we do not require k to be ountable.

Proposition 4.7.1. 1. There exists a Chow weight struture on DMeff
gm that

is uniquely haraterized by the ondition that all Mgm(P ) for P ∈ SmPrV ar
belong to its heart; it ould be extended to a weight struture wChow on D.

2. The heart of wChow is the ategory HChow of arbitrary small produts of

(e�etive) Chow motives.

3. We have X ∈ D
wChow≥0

if and only if D(X,Y [i]) = {0} for any Y ∈
ObjChoweff

, i > 0.
4. There exists a t-struture tChow on D that is right adjaent to wChow (see

Remark 2.5.7). Its heart is the opposite ategory to Choweff ∗
(i.e. it is equiv-

alent to (AddFun(Choweff , Ab))op).
5. wChow respets produts i.e. Xi ∈ D

wChow≤0 =⇒
∏

Xi ∈ D
wChow≤0

and

Xi ∈ D
wChow≥0 =⇒

∏
Xi ∈ D

wChow≥0
.

6. For

∏
Xi there exists a weight deomposition:

∏
Xi →

∏
Xw≤0

i →∏
Xw≥1

i .

7. If H : D → A is an extended theory, then the funtor that sends X to the

derived exat ouple for TwChow
(H,X) (see Theorem 2.4.2) onverts all small

produts into diret sums.

Proof. 1. It was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6℄ that

there exists a unique weight struture w′
Chow on DMeff

gm suh that Mgm(P ) ∈

D
w′

Chow
=0

for all P ∈ SmPrV ar. Moreover, the heart of this struture is

exatly Choweff ⊂ DMeff
gm .

Now, DMeff
gm is generated by Choweff

. It easily follows that {Mgm(P ), P ∈
SmPrV ar} weakly ogenerates D. Then the dual (see Theorem 2.2.1(1)) of

Theorem 4.5.2(I2) of [6℄ yields that w′
Chow ould be extended to a weight stru-

ture wChow for D. Moreover, the dual to part II1 of lo.it. yields that for this

extension we have: HwChow is the idempotent ompletion of HChow.
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2. It remains to prove that HChow is idempotent omplete. This is obvious

sine Choweff
is.

3. This is just the dual of (27) in lo.it.

4. The dual statement to part I2 of lo.it. (f. Remark 1.1.3(1)) yields the

existene of tChow. Applying the dual of Theorem 4.5.2(II1) of [6℄ we obtain

for the heart of t: HtChow
∼= (Choweff

∗ )op.

5. Theorem 2.2.1(2) easily yields that D
wChow≤0

is stable with respet to

produts. The stability of D
wChow≥0

with respet to produts follows from

assertion 3; here we reall that all objets of Choweff
are oompat in D.

6. Immediate from the previous assertion; note that any small produt of

distinguished triangles is distinguished (see Remark 1.2.2 of [21℄).

7. Sine H is extended, it onverts produts in D into diret sums in A. Hene
for any Xi ∈ ObjD there exist a hoie of exat ouples for the orresponding

weight spetral sequenes for Xi and
∏

Xi that respets produts i.e suh that

Dpq
1 TwChow

(H,
∏

Xi) ∼=
⊕

i D
pq
1 TwChow

(H,Xi) and Epq
1 TwChow

(H,
∏

Xi) ∼=⊕
i E

pq
1 TwChow

(H,Xi) (for all p.q ∈ Z; this isomorphism is also ompatible

with the onneting morphisms of ouples). Sine A satis�es AB5, we obtain

the isomorphism desired for D2 and E2-terms (note that those are uniquely

determined by H and X).

Remark 4.7.2. 1. In Remark 2.4.3 of [6℄ it was shown that weight spetral

sequenes orresponding to the Chow weight struture are isomorphi to the

lassial (i.e. Deligne's) weight spetral sequenes when the latter are de�ned

(i.e. for singular or étale ohomology of varieties). Yet in order to speify the

hoie of a weight struture here we will all these spetral sequenes Chow-

weight ones.

2. All the assertions of the Proposition ould be extended to arbitrary tri-

angulated ategories with negative families of oompat weak ogenerators

(sometimes one should also demand all produts to exist; in assertion 7 we

only need H to onvert all produts into diret sums).

3. Sine (e�etive) Chow motives are oompat in D, HwChow is the

ategory of 'formal produts' of Choweff
i.e. D(

∏
l∈L Xl,

∏
i∈I Yi) =∏

i∈I(⊕l∈LChoweff (Xl, Yi)) for Xl, Yl ∈ ObjChoweff ⊂ ObjD (f. Remark

4.5.3(2) of [6℄).

4. Reall (see �7.1 of ibid.) that DMeff
− supports (adjaent) Chow weight

and t-strutures (we will denote them by w′
Chow and t′Chow, respetively). One

ould also hek that these strutures are right orthogonal to the orresponding

Chow strutures for D. Hene, applying Proposition 2.5.4(1) repeatedly one

ould relate the ompositions of trunations (on Ds ⊂ D) via w and via tChow

(resp. via w and via wChow) with trunations via t and via w′
Chow (resp. via

t and via t′Chow) on DMeff
− ; f. �8.3 of [6℄. One ould also apply wChow-

trunations and then w-trunations (i.e. ompose trunations in the opposite

order) when starting from an objet of DMeff
gm . Reall also that trunations via
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tChow (and their ompositions with t-trunations) are related with unrami�ed

ohomology; see Remark 7.6.2 of ibid.

4.8 Comparing Chow-weight and coniveau spectral sequences

Now we prove that Chow-weight and oniveau spetral sequenes are naturally

isomorphi for birational ohomology theories.

Proposition 4.8.1. 1. wChow for D dominates w (for Ds) in the sense of

�2.7.

2. Let H : DMeff
gm → A be an extended ohomology theory in the sense of

Remark 4.3.2; suppose that H is birational i.e. that H(Mgm(P )(1)[i]) = 0 for

all P ∈ SmPrV ar, i ∈ Z. Then for any X ∈ ObjDs the Chow-weight spetral

sequene TwChow
(H,X) (orresponding to wChow) is naturally isomorphi start-

ing from E2 to (our) oniveau spetral sequene Tw(H,X) via the omparison

morphism M given by Proposition 2.7.3(I1).

Proof. 1. Let D be the lass of all ountable produts

∏
l∈L Mgm(Kl), where

Mgm(Kl) denote omotives of (spetra of) funtion �elds over k of bounded

transendene degree. Proposition 4.1.1 and Corollary 4.2.2(2) yield that any

X ∈ D
w=0
s is a retrat of some element of D. It su�es to hek that any

X =
∏

l∈L Mgm(Kl) belongs to D
wChow≥0

; here we reall that w is bounded

and apply Lemma 2.7.5.

By Proposition 4.7.1(5), we an assume that L onsists of a single element.

In this ase we have D(Mgm(Kl),Mgm(P )[i]) = 0 (this is a trivial ase of

Proposition 3.5.1); hene lo.it. yields the result.

2. We take the same D and X as above.

Let char k = 0. We hoose Pl ∈ SmPrV ar suh that Kl are their fun-

tion �elds. Sine all Mgm(Pl) are oompat in D, we have a natural

morphism X →
∏

Mgm(Pl). By Proposition 2.7.3(I2), it su�es to hek

that Cone(X →
∏

Mgm(Pl)) ∈ D
wChow≥0

, H(X) ∼= H(
∏

Mgm(Pl)), and

E∗∗
2 TwChow

(H,Cone(X →
∏

Mgm(Pl))) = 0.
By Proposition 4.7.1(7) we obtain: it su�es again to verify these statements

in the ase when L onsists of a single element. Now, we have Spec(Kl) =
lim
←−

Mgm(U) for U ∈ SmV ar, k(U) = Kl. Therefore (27) yields: it su�es to

verify assertions required for Z = Mgm(U → P ) instead, where U ∈ SmV ar,
U is open in P ∈ SmPrV ar.
The Gysin distinguished triangle for Voevodsky's motives (see Proposition 2.4.5

of [9℄) easily yields by indution that Z ∈ ObjDMeff
gm (1).

Sine Choweff
is − ⊗ Z(1)[2]-stable, we obtain that there exists a wChow-

Postnikov tower for Z suh that all of its terms are divisible by Z(1); this yields
the vanishing of E∗∗

2 TwChow
(H,Z). Lastly, the fat that Z ∈ DMeff

gm
w′

Chow
≥0

was (essentially) proved by easy indution (using the Gysin triangle) in the

proof of Theorem 6.2.1 of [7℄.

In the ase char k > 0, de Jong's alterations allow to replae Mgm(Pl) in

the reasoning above by some Chow motives (with rational oe�ients); see
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Appendix B of [14℄; we will not write down the details here.

Remark 4.8.2. Assertion 2 is not very atual for ohomology of smooth varieties

sine any Z ∈ SmPrV ar is birationally isomorphi to P ∈ SmPrV ar (at least
for char k = 0). Yet the statement beomes more interesting when applied for

X = M c
gm(Z).

4.9 Birational motives; constructing the Gersten weight struc-
ture by gluing; other possible weight structures

An alternative way to prove Proposition 4.8.1(2) is to onsider (following [15℄)

the ategory of birational omotives. It satis�es the following properties:

(i) All birational ohomology theories fatorize through it.

(ii) Chow and Gersten weight strutures indue the same weight struture on

it (see De�nition 2.7.1(4)).

(iii) More generally, for any n ≥ 0 Chow and Gersten weight strutures indue

weight strutures on the loalizations D(n)/D(n + 1) ∼= Dbir (we all these

loalizations slies) that di�er only by a shift.

Moreover, one ould 'almost reover' original Chow and Gersten weight stru-

tures starting from this single weight struture.

Now we desribe the onstrutions and fats mentioned in more detail. We

will be rather skethy here, sine we will not use the results of this subsetion

elsewhere in the paper. Possibly, the details will be written down in another

paper.

As we will show in �5.4.3 below, the Tate twist funtor ould be extended (as

an exat funtor) from DMeff
gm to D; this funtor is ompatible with (small)

produts.

Proposition 4.9.1. I The funtor − ⊗ Z(1)[1] is weight-exat with respet to

w on Ds; −⊗ Z(1)[2] is weight-exat with respet to wChow on D (we will say

that w is −⊗ Z(1)[1]-stable, and wChow is −⊗ Z(1)[2]-stable).
II Let Dbir denote the loalization of D by D(1); B is the loalization funtor.

We denote B(Ds) by Ds,bir.

1. wChow indues a weight struture w′
bir on Dbir. Besides, w indues a weight

struture wbir on Ds,bir.

2. We have D
wbir≤0
s,bir ⊂ D

w′

bir
≤0

bir , D
wbir≥0
s,bir ⊂ D

w′

bir
≥0

bir (i.e. the embedding

(Ds,bir, wbir)→ (Dbir, w
′
bir) is weight-exat).

3. For any pro-sheme U we have B(Mgm(U)) ∈ D
wbir=0
s,bir .

Proof. I This is easy, sine the funtors mentioned obviously map the orre-

sponding hearts (of weight strutures) into themselves.

II 1. By assertion I, wChow indues a weight struture on D(1) (i.e. D(1) is a
triangulated ategory, ObjD(1) ∩D

wChow≤0
and ObjD(1) ∩D

wChow≥0
yield a

weight struture on it). Hene by Proposition 8.1.1(1) of [6℄ we obtain existene
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(and uniqueness) of w′
bir. The same argument also implies the existene of some

wbir on Ds,bir.

2. Now we ompare wbir with w′
bir. Sine w is bounded, wbir also is (see

lo.it.). Hene it su�es to hek that Hwbir ⊂ Hw′
bir (see Theorem

2.2.1(19)).

Moreover, it su�es to hek that for X =
∏

l∈L Mgm(Kl) we have B(X) ∈

D
w′

bir
=0

bir (sine D
w′

bir
=0

bir is Karoubi-losed in Dbir, here we also apply Propo-

sition 4.7.1(2)). As in the proof of Proposition 4.8.1(2), we will onsider the

ase char k = 0; the ase char k = p is treated similarly. Then we hoose Pl ∈
SmPrV ar suh that Kl are their funtion �elds; we have a natural morphism

X →
∏

Mgm(Pl). It remains to hek that Cone(X →
∏

Mgm(Pl)) ∈ Ds(1).
Now, sineDs(1) and the lass of distinguished triangles are losed with respet
to small produts, it su�es to onsider the ase when L onsists of a single

element. In this ase the statement is immediate from Corollary 3.6.2.

3. Immediate from Corollary 3.6.2.

Remark 4.9.2. 1. Assertion II easily implies Proposition 4.8.1(2).

Indeed, any extended birational H (as in lo.it.) ould be fatorized as G ◦B
for a ohomologial G : Dbir → A. Sine B is weight-exat with respet to

wChow (and its restrition to Ds is weight-exat with respet to w), (the trivial
ase of) Proposition 2.7.3(I2) implies that for any X ∈ ObjD (any hoie)

of Tw′

bir
(G,B(X)) is naturally isomorphi starting from E2 to any hoie of

TwChow
(H,X); for any X ∈ ObjDs (any hoie) of Twbir

(G,B(X)) is naturally
isomorphi starting from E2 to any hoie of Tw(H,X).
It is also easily seen that the isomorphism TwChow

(H,X)→ Tw(H,X) is om-

patible with the omparison morphism M (see lo.it.).

2. The proof of existene of wbir and of assertion 3 works with integral o-

e�ients even if char k > 0. Hene we obtain that that the ategory image

B(Mgm(U)), U ∈ SmV ar, is negative. We an apply this statement in C be-

ing the idempotent ompletion of B(DMeff
gm ) i.e. in the ategory of birational

omotives. Hene Theorem 2.2.1(18) yields: there exists a weight struture for

C whose heart is the ategory of birational Chow motives (de�ned as in �5 of

[15℄). Note also that one an pass to the indutive limit with respet to base

hange in this statement (f. �4.6); hene one does not need to require k to be

ountable.

Now we explain that w and wChow ould be 'almost reovered' from

(Dbir, w
′
bir). Exatly the same reasoning as above shows that for any n > 0 the

loalization of D by D(n) ould be endowed with a weight struture w′
n om-

patible with wChow, whereas the loalization of Ds by Ds(n) ould be endowed

with a weight struture wn ompatible with w.

Next, we have a short exat sequene of triangulated ategories D/D(n)
i∗→

D/D(n+ 1)
j∗

→ Dbir. Here the notation for funtors omes from the 'lassial'

gluing data setting (f. �8.2 of [6℄); i∗ ould be given by − ⊗ Z(1)[s] for any
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s ∈ Z, j∗ is just the loalization. Now, if we hoose s = 2 then i∗ is weight-

exat with respet to w′
n and w′

n+1; if we hoose s = 1 then the restrition of

i∗ to Ds/Ds(n) is weight-exat with respet to wn and wn+1.

Next, an argument similar to the one used in �8.2 of [6℄ shows: for any short

exat sequene D
i∗→ C

j∗

→ E of triangulated ategories, if D and E are endowed

with weight strutures, then there exist at most one weight struture on C suh

that both i∗ and j∗ are weight-exat (see also Lemma 4.6 of [3℄ for the proof

of a similar statement for t-strutures). Hene one an reover wn and w′
n

from (opies of) w′
bir; the main di�erene between them is that the �rst one

is −⊗ Z(1)[1]-stable, whereas the seond one is −⊗ Z(1)[2]-stable. It is quite
amazing that weight strutures orresponding to spetral sequenes of quite

distint geometri origin di�er just by [1] here! If one alls the �ltration of D

by D(n) the slie �ltration (this term was already used by A. Huber, B. Kahn,

M. Levine, V. Voevodsky, and other authors for other 'motivi' ategories),

then one may say that wn and w′
n ould be reovered from slies; the di�erene

between them is 'how we shift the slies'.

Moreover, Theorem 8.2.3 of [6℄ shows: if both adjoints to i∗ and j∗ exist, then

one an use this gluing data in order to glue (any pair) of weight strutures

for D and E into a weight struture for C. So, suppose that we have a weight

struture wn,s for D/D(n) that is − ⊗ (1)[s]-stable and ompatible with w′
bir

on all slies (in the sense desribed above; so w′
n = wn,2, wn is the restrition

of wn,1 to Ds/Ds(n), and all w1,s oinide with w′
bir). General homologial

algebra (see Proposition 3.3 of [18℄) yields that all the adjoints required do

exist in our ase. Hene one an onstrut wn+1,s for D/D(n+1) that satis�es
similar properties. So, wn,s exist for all n > 0 and all s ∈ Z. Hene Gersten

and Chow weight strutures (forDs/Ds(n) ⊂ D/D(n)) are members of a rather

natural family of weight strutures indexed by a single integral parameter. It

ould be interesting to study other members of it (for example, the one that is

−⊗ Z(1)-stable), though possibly w′
n is the only member of this family whose

heart is oompatly generated.

This approah ould allow to onstrut w in the ase of a not neessarily

ountable k. Note here that the system of Ds/Ds(n) yields a �ne approx-

imation of Ds. Indeed, if X ∈ SmPrV ar, n ≥ dimX, then Poinare du-

ality yields: for any Y ∈ ObjDMeff
gm we have DMeff

gm (Y (n),Mgm(X)) ∼=

DMeff
gm (Y ⊗ X(n − dimX)[−2 dimX],Z); this is zero if n > dimX sine Z

is a birational motif. Hene (by Yoneda's lemma) for any n > 0 the full sub-

ategory of DMeff
gm generated by motives of varieties of dimension less than n

fully embeds into DMeff
gm /DMeff

gm (n) ⊂ D/D(n).

It follows that the restritions of wn,s to a ertain series of (su�iently small)

subategories of D/D(n) are indued by a single −⊗ (1)[s]-stable weight stru-
ture ws for the orresponding subategory of D. Here for the orresponding

subategory of D/D(n) (or D) one an take the union of the subategories

of D/D(n) (resp. D) generated (in an appropriate sense) by omotives of

(smooth) varieties of dimension ≤ r (with r running through all natural num-
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bers). Note that this subategory of D ontains DMeff
gm .

We also relate brie�y our results with the (onjetural) piture for t-strutures
desribed in [3℄. There another (geometri) �ltration for motives was onsid-

ered; this �ltration (roughly) di�ers from the �ltration onsidered above by (a

ertain version of) Poinare duality. Now, onjeturally the grn of the ategory

of birational motives with rational oe�ients (f. �4.2 of ibid.) should be (the

homotopy ategory of omplexes over) an abelian semisimple ategory. Hene it

supports a t-struture whih is simultaneously a weight struture. This stru-

ture should be the building blok of all relevant weight and t-strutures for

omotives. Certainly, this piture is quite onjetural at the present moment.

Remark 4.9.3. The author also hopes to arry over (some of) the results of the

urrent paper to relative motives (i.e. motives over a base sheme that is not a

�eld), relative omotives, and their ohomology. One of the possible methods

for this is the usage of gluing of weight strutures (see �8.2 of [6℄, espeially

Remark 8.2.4(3) of lo.it.). Possibly for this situation the 'version of D' that

uses motives with ompat support (see �6.4 below) ould be more appropriate.

5 The construction of D and D
′; base change and Tate twists

Now we onstrut our ategories D
′
and D using the di�erential graded ate-

gories formalism.

In �5.1 we reall the de�nitions of di�erential graded ategories, modules over

them, shifts and ones (of morphisms).

In �5.2 we reall main properties of the derived ategory of (modules over) a

di�erential graded ategory.

In �5.3 we de�ne D
′
and D as the ategories opposite to the orresponding

ategories of modules; then we prove that they satisfy the properties required.

In �5.4 we use the di�erential graded modules formalism to de�ne base hange

for motives (extension and restrition of salars). This yields: our results on di-

ret summands of omotives (and ohomology) of funtion �elds (proved above)

ould be arried over to pro-shemes obtained from them via base hange.

We also de�ne tensoring of omotives by motives, as well as a ertain 'o-

internal Hom' (i.e. the orresponding left adjoint funtor to X ⊗ − for X ∈
ObjDMeff

gm ). These results do not require k to be ountable.

5.1 DG-categories and modules over them

We reall some basi de�nitions; f. [16℄ and [12℄.

An additive ategory A is alled graded if for any P,Q ∈ ObjA there is a

anonial deomposition A(P,Q) ∼= ⊕iA
i(P,Q) de�ned; this deomposition

satis�es Ai(∗, ∗) ◦ Aj(∗, ∗) ⊂ Ai+j(∗, ∗). A di�erential graded ategory (f.

[12℄) is a graded ategory endowed with an additive operator δ : Ai(P,Q) →
Ai+1(P,Q) for all i ∈ Z, P,Q ∈ ObjA. δ should satisfy the equalities δ2 = 0
(so A(P,Q) is a omplex of abelian groups); δ(f ◦ g) = δf ◦ g+ (−1)if ◦ δg for

any P,Q,R ∈ ObjA, f ∈ Ai(P,Q), g ∈ A(Q,R). In partiular, δ(idP ) = 0.
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We denote δ restrited to morphisms of degree i by δi.

Now we give a simple example of a di�erential graded ategory.

For an additive ategory B we onsider the ategory B(B) whose objets are
the same as for C(B) whereas for P = (P i), Q = (Qi) we de�ne B(B)i(P,Q) =∏

j∈Z
B(P j , Qi+j). Obviously B(B) is a graded ategory. We will also onsider

a full subategory Bb(B) ⊂ B(B) whose objets are bounded omplexes.

We set δf = dQ◦f−(−1)
if ◦dP , where f ∈ Bi(P,Q), dP and dQ are the di�er-

entials in P and Q. Note that the kernel of δ0(P,Q) oinides with C(A)(P,Q)
(the morphisms of omplexes); the image of δ−1

are the morphisms homotopi

to 0.

Note also that the opposite ategory to a di�erential graded ategory beomes

di�erential graded also (with the same gradings and di�erentials) if we de�ne

fop ◦ gop = (−1)pq(g ◦ f)op for g, f being omposable homogeneous morphisms

of degrees p and q, respetively.

For any di�erential graded A we de�ne an additive ategory H(A) (some au-

thors denote it by H0(A)); its objets are the same as for A; its morphisms are

de�ned as

H(A)(P,Q) = Ker δ0A(P,Q)/ Im δ−1
A (P,Q).

In the ase when H(A) is triangulated (as a full subategory of the ategory

K(A) desribed below) we will say that A is a (di�erential graded) enhanement

for H(A).

We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Ker δ0A(P,Q).
We have an obvious funtor Z(A) → H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).

Now we de�ne (left di�erential graded) modules over a small di�erential graded

ategory A (f. �3.1 of [16℄ or �14 of [12℄): the objets DG-Mod(A) are those
additive funtors of the underlying additive ategories A → B(Ab) that pre-
serve gradings and di�erentials for morphisms. We de�ne DG-Mod(A)i(F,G)
as the set of transformations of additive funtors of degree i; for h ∈
DG-Mod(A)i(F,G) we de�ne δi(h) = dG ◦ f − (−1)if ◦ dF . We have a natural

Yoneda embedding Y : Aop → DG-Mod(A) (one should apply Yoneda's lemma

for the underlying additive ategories); it is easily seen to be a full embedding

of di�erential graded ategories.

Now we de�ne shifts and ones in DG-Mod(A) omponentwisely. For F ∈
ObjDG-Mod(A) we set F [1](X) = F (X)[1]. For h ∈ Ker δ0DG-Mod(A)(F,G)

we de�ne the objet Cone(h): Cone(h)(X) = Cone(F (X) → G(X)) for all

X ∈ ObjA.

Note that for A = B(B) both of these de�nitions are ompatible with the

orresponding notions for omplexes (with respet to the Yoneda embedding).

We have a natural triangle of morphisms in δ0DG-Mod(A):

P
f
→ P ′ → Cone(f)→ P [1]. (30)
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5.2 The derived category of a differential graded category

We de�ne K(A) = H(DG-Mod(A)). It was shown in �2.2 of [16℄ that K(A) is a
triangulated ategory with respet to shifts and ones of morphisms that were

de�ned above (i.e. a triangle is distinguished if it is isomorphi to those of the

form (30)).

We will say that f ∈ Ker δ0DG-Mod(A)(F,G) is a quasi-isomorphism if for any

X ∈ ObjA it yields an isomorphism F (X) → F (Y ). We de�ne D(A) as the
loalization of K(A) with respet to quasi-isomorphisms; so it is a triangulated

ategory. Note that quasi-isomorphisms yield a loalizing lass of morphisms

in K(A). Moreover, the funtor X → H0(F (X)) : K(A)→ Ab is orepresented
by DG-Mod(A)(X,−) ∈ ObjK(A); hene for any X ∈ ObjA, F ∈ ObjK(A) we
have

D(A)(Y (X), F ) ∼= K(A)(Y (X), F ). (31)

Hene we have an embedding H(A)op → D(A).
We de�ne C(A) as Z(DG-Mod(A)). It is easily seen that C(A) is losed with

respet to (small �ltered) diret limits, and lim
−→

Fl is given by X → lim
−→

Fl(X).
Now we reall (brie�y) that di�erential graded modules admit ertain 'resolu-

tions' (i.e. any objet is quasi-isomorphi to a semi-free one in the terms of �14

of [12℄).

Proposition 5.2.1. There exists a full triangulated K ′ ⊂ K(A) suh that the

projetion K(A)→ D(A) indues an equivalene K ′ ≈ D(A). K ′
is losed with

respet to all (small) oproduts.

Proof. See �14.8 of [12℄

Remark 5.2.2. In fat, there exists a (Quillen) model struture for C(A) suh
that D(A) its homotopy ategory; see Theorem 3.2 of [16℄. Moreover (for the

�rst model strutures mentioned in lo.it) all objets of C(A) are �brant, all
objets oming from A are o�brant. For this model struture two morphisms

are homotopi whenever they beome equal in K(A). So, one ould take K ′

whose objets are the o�brant objets of C(A).
Using these fats, one ould verify most of Proposition 3.1.1 (for D

′
and D

desribed below).

5.3 The construction of D
′ and D; the proof of Proposition 3.1.1

It was proved in �2.3 of [4] (f. also [19℄ or �8.3.1 of [7℄) that DMeff
gm ould be

desribed as H(A), where A is a ertain (small) di�erential graded ategory.

Moreover, the funtor Kb(SmCor) → DMeff
gm ould be presented as H(f),

where f : Bb(SmCor) → A is a di�erential graded funtor. We will not

desribe the details for (any of) these onstrutions sine we will not need

them.

We de�neD
′ = C(A)op, D = D(A)op, p is the natural projetion. We verify that

these ategories satisfy Proposition 3.1.1. Assertion 10 follows from the fat
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that any loalization of a triangulated ategory that possesses an enhanement

is enhaneable also (see ��3.4�3.5 of [12℄).

The embedding H(A)op → D(A) yields DMeff
gm ⊂ D

′
. Sine all objets oming

from A are oompat in K(A)op, Proposition 5.2.1 yields that the same is true

in D. We obtain assertion 1.

D
′
is losed with respet to inverse limits sine C(A) is losed with respet to

diret ones. Sine the projetion C(A)→ K(A) respets oproduts (as well as
all other (�ltered) olimits), Proposition 5.2.1 yields that p respets produts

also. We obtain assertion 2.

The desriptions of C(A) and D(A) yields all the properties of shifts and ones

required. This yields assertions 3, 4, and 6. Sine D(A) is a loalization of

K(A), we also obtain assertion 5.

Next, sine D(A) is a loalization of K(A) with respet to quasi-isomorphisms,

we obtain assertion 8.

Reall that �ltered diret limits of exat sequenes of abelian groups are exat.

Hene for any X ∈ ObjA ⊂ ObjD′
, Y : L→ DG-Mod(A) we have

K(A)(DG-Mod(A)(X,−), lim
−→l

Yl) = H0((lim
−→

Yl)(A))

= H0(lim
−→

(Yl(A))) = lim
−→

H0(Yl(A)) = lim
−→l
K(A)(DG-Mod(A)(X,−), Yl).

Applying (31) we obtain assertion 7.

It remains to verify assertion 9 of lo.it. Sine the inverse limit with respet

to a projetive system is isomorphi to the inverse limit with respet to any its

unbounded subsystem, and the same is true for lim
←−1

in the ountable ase, we

an assume that I is the ategory of natural numbers, i.e. we have a sequene

of Fi onneted by morphisms.

In this ase we have funtorial morphisms lim
←−

Fi
f
→

∏
Fl

g
→

∏
Fi as in (27).

Hene it su�es to hek that these morphisms yield a distinguished trian-

gle in D. Note that g ◦ f = 0; hene g ould be fatorized through a mor-

phism h : Cone f →
∏

Fi in D
′
. Sine for any X ∈ ObjA the morphism

h∗ :
∏

D′ Fi(X) → ConeF (X) is a quasi-isomorphism, h beomes an isomor-

phism in D. This �nishes the proof.

Remark 5.3.1. 1. Note that the only part of our argument when we needed k
to be ountable in the proof of assertion 9 of lo.it.

2. The onstrutions of A (i.e. of the 'enhanement' for DMeff
gm mentioned

above) that were desribed in [4℄, [19℄, and in [7℄, are easily seen to be funtorial

with respet to base �eld hange (see below). Still, the onstrutions mentioned

are distint and far from being the only ones possible; the author does not

know whether all possible D are isomorphi. Still, this makes no di�erene for

ohomology (of pro-shemes); see Remark 4.3.2.

Moreover, note that assertion 10 of Proposition 3.1.1 was not very important

for us (without if we would only have to onsider a ertain weakly exat weight

omplex funtor in �6.1 below; see �3 of [6℄). The author doubts that this

ondition follows from the other parts of Proposition 3.1.1.
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5.4 Base change and Tate twists for comotives

Our di�erential graded formalism yields ertain funtoriality of omotives with

respet to embeddings of base �elds. We onstrut both extension and re-

strition of salars (the latter one for the ase of a �nite extension of �elds

only). The onstrution of base hange funtors uses indution for di�erential

graded modules. This method also allows to de�ne ertain tensor produts and

Co−Hom for omotives. In partiular, we obtain a Tate twist funtor whih

is ompatible with (29) (and a left adjoint to it).

We note that the results of this subsetion (probably) ould not be dedued

from the 'axioms' of D listed in Proposition 3.1.1; yet they are quite natural.

5.4.1 Induction and restriction for differential graded modules:
reminder

We reall ertain results of �14 of [12℄ on funtoriality of di�erential graded

modules. These extend the orresponding (more or less standard) statements

for modules over di�erential graded algebras (f. �14.2 of ibid.).

If f : A→ B is a funtor of di�erential graded ategories, we have an obvious

restrition funtor f∗ : C(B) → C(A). It is easily seen that f∗
also indues

funtors K(B) → K(A) and D(B) → D(A). Certainly, the latter funtor

respets homotopy olimits (i.e. the diret limits from C(B)).

Now, it is not di�ult to onstrut an indution funtor f∗ : DG-Mod(A) →
DG-Mod(B) whih is left adjoint to f∗

; see �14.9 of ibid. By Example 14.10 of

ibid, for any X ∈ ObjA this funtor sends X∗ = A(X,−) to f(X)∗.

f∗ also indues funtors C(A) → C(B) and K(A) → K(B). Restriting the

latter one to the ategory of semi-free modules K ′
(see Proposition 5.2.1) one

obtains a funtor Lf∗ : D(A) → D(B) whih is also left adjoint to the orre-

sponding f∗
; see �14.12 of [12℄. Sine all funtors of the type X∗

are semi-free

by de�nition, we have Lf∗(X
∗) = A(X,−) = Lf(X)∗. It an also be shown

that Lf∗ respets diret limits of objets of Aop
(onsidered as A-modules via

the Yoneda embedding). In the ase of ountable limits this follows easily from

the de�nition of semi-free modules and the expression of the homotopy olimit

in D(A) as lim
−→

Xi = Cone(
⊕

Xi →
⊕

Xi) (this is just the dual to (27)). For

unountable limits, one ould prove the fat using a 'resolution' of the diret

limit similar to those desribed in �A3 of [21℄.

5.4.2 Extension and restriction of scalars for comotives

Now let l/k be an extension of perfet �elds.

Reall thatD
′
andD were desribed (in �5.3) in terms of modules over a ertain

di�erential graded ategory A. It was shown in [19℄ that the orresponding

version of A is a tensor (di�erential graded) ategory; we also have an extension

of salars funtor Ak → Al. It is most probable that both of these properties

hold for the version of A desribed in [4℄ (note that they obviously hold for
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Bb(SmCor)). Moreover, if l/k is �nite, then we have the funtor of restrition

of salars in inverse diretion.

So, the indution for the orresponding di�erential graded modules yields

an exat funtor of extension of salars Extl/k : Dk → Dl. The reasoning

above shows that Extl/k is ompatible with the 'usual' extension of salars

for smooth varieties (and omplexes of smooth orrespondenes). Moreover,

sine Extl/k respets homotopy limits, this ompatibility extends to omotives

of pro-shemes and their produts. It an also be easily shown that Extl/k
respets Tate twists.

We immediately obtain the following result.

Proposition 5.4.1. Let k be ountable (and perfet), let l ⊃ k be a perfet

�eld.

1. Let S be a onneted primitive sheme over k, let S0 be its generi point.

Then Mgm(Sl) is a retrat of Mgm(S0l) in Dl.

2. Let K be a funtion �eld over k. Let K ′
be the residue �eld for a geometri

valuation v of K of rank r. Then Mgm(K ′
l(r)[r]) is a retrat of Mgm(Kl) in

Dl.

As in 4.3, this result immediately implies similar statements for any ohomology

of pro-shemes mentioned (onstruted from a ohomologial H : DMeff
gm l → A

via Proposition 1.2.1).

Next, if l/k is �nite, indution for di�erential graded modules applied to

the restrition of salars for A's also yields a restrition of salars funtor

Resl/k : Dl → Dk. Similarly to Extl/k, this funtor is ompatible with re-

strition of salars for smooth varieties, pro-shemes, and omplexes of smooth

orrespondenes; it also respets Tate twists.

It follows: l/k is �nite, then Extl/k maps Dsk to Dsl; Resl/k maps Dsl to Dsk.

Besides, if we also assume l to be ountable, then both of these funtors respet

weight strutures (i.e. they map Ds
w≤0
k to Ds

w≤0
l , Ds

w≥0
k to Ds

w≥0
l , and vie

versa).

Remark 5.4.2. It seems that one an also de�ne restrition of salars via re-

strition of di�erential graded modules (applied to the extension of salars for

A's). To this end one needs to hek the orresponding adjuntion for DMeff
gm ;

the orresponding (and related) statement for the motivi homotopy ategories

was proved by J. Ayoub. This would allow to de�ne Resl/k also in the ase

when l/k is in�nite; this seems to be rather interesting if l is a funtion �eld

over k. Note that Resl/k (in this ase) would (probably) also map Ds
w≤0
l to

Ds
w≤0
k and Ds

w≥0
l to Ds

w≥0
k (if l is ountable).

5.4.3 Tensor products and ’co-internal Hom’ for comotives; Tate
twists

Now, for X ∈ ObjA we apply restrition and indution of di�erential graded

modules for the funtor X ⊗ − : A → A. Indution yields a ertain funtor
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X ⊗− : D→ D, whereas restrition yields its left adjoint whih we will denote

by Co −Hom(X,−) : D → D. Both of them respet homotopy limits. Also,

X⊗− is ompatible with tensoring byX onDMeff
gm . Besides, the isomorphisms

lasses of these funtors only depend on the quasi-isomorphism lass of X in

DG-Mod(A). Indeed, it is easily seen that both X ⊗ Y and Co−Hom(X,Y )
are exat with respet to X if we �x Y ; sine they are obviously zero for X = 0,
it remains to note that quasi-isomorphi objets ould be onneted by a hain

of quasi-isomorphisms.

Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n ∈ Z. Then we

obtain that the formal Tate twists de�ned by (29) are the true Tate twists i.e.

they are given by tensoring by X on D. Then reall the Canellation Theorem

for motives: (see Theorem 4.3.1 of [25℄, and [27℄)): X ⊗− is a full embedding

of DMeff
gm into itself. Then one an dedue that X ⊗ − is fully faithful on D

also (sine all objets of D ome from semi-free modules over A). Moreover,

Co −Hom(X,−) ◦ (X ⊗ −) is easily seen to be isomorphi to the identity on

D (for suh an X).

6 Supplements

We desribe some more properties of omotives, as well as ertain possible

variations of our methods and results. We will be somewhat skethy sometimes.

In �6.1 we de�ne an additive ategory D
gen

of generi motives (a variation

of those studied in [9℄). We also prove that the exat onservative weight

omplex funtor (that exists by the general theory of weight strutures) ould

be modi�ed to an exat onservative WC : Ds → Kb(Dgen). Besides, we prove
assertions on retrats of the pro-motif of a funtion �eld K/k, that are similar

to (and follow from) those for its omotif.

In �6.2 we prove that HI has a nie desription in terms of Hw. This is a sort of
Brown representability: a ofuntor Hw → Ab is representable by a (homotopy

invariant) sheaf with transfers whenever it onverts all small produts into

diret sums. This result is similar to the orresponding results of �4 of [6℄ (on

the onnetion between the hearts of adjaent strutures).

In �6.3 we note that our methods ould be used for motives (and omotives)

with oe�ients in an arbitrary ommutative unital ring R; the most important

ases are rational (o)motives and 'torsion' (o)motives.

In �6.4 we note that there exist natural motives of pro-shemes with ompat

support in DMeff
− . It seems that one ould onstrut alternative D and D

′

using this observation (yet this probably would not a�et our main results

signi�antly).

We onlude the setion by studying whih of our arguments ould be extended

to the ase of an unountable k.
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6.1 The weight complex functor; relation with generic motives

We reall that the general formalism of weight strutures yields a onservative

exat weight omplex funtor t : Ds → Kb(Hw); it is ompatible with De�ni-

tion 2.1.2(9). Next we prove that one an ompose it with a ertain 'projetion'

funtor without losing the onservativity.

Lemma 6.1.1. There exists an exat onservative funtor t : Ds → Kb(Hw)
that sends X ∈ ObjDs to a hoie of its weight omplex (oming from any

hoie of a weight Postnikov tower for it).

Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6℄ (note that

Ds has a di�erential graded enhanement by Proposition 3.1.1(10)).

Now, sine all objets of Hw are retrats of those that ome via p from inverse

limits of objets of j(Cb(SmCor)), we have a natural additive funtor Hw →
D

naive
(see �1.5). Its ategorial image will be denoted by D

gen
; this is a

slight modi�ation of Deglise's ategory of generi motives. We will denote the

'projetion' Hw → D
gen

and Kb(Hw)→ Kb(Dgen) by pr.

Theorem 6.1.2. 1. The funtor WC = pr ◦ t : Ds → Kb(Dgen) is exat and

onservative.

2. Let S be a onneted primitive sheme, let S0 be its generi point. Then

pr(Mgm(S)) is a retrat of pr(Mgm(S0)) in D
gen

.

3. Let K be a funtion �eld over k. Let K ′
be the residue �eld for some

geometri valuation v of K of rank r. Then pr(Mgm(K ′)(r)[r]) is a retrat of

pr(Mgm(K)) in D
gen

.

Proof. 1. The exatness of WC is obvious (from Lemma 6.1.1). Now we hek

that WC is onservative.

By Proposition 3.1.1(8), it su�es to hek: if WC(X) is ayli for some

X ∈ ObjDs, then D(X,Y ) = 0 for all Y ∈ ObjDMeff
gm . We denote the terms

of t(X) by Xi
.

We onsider the oniveau spetral sequene T (H,X) for the funtor H =
D(−, Y ) (see Remark 4.4.2). Sine WC(X) is ayli, we obtain that the

omplexes D(X−i, Y [j]) are ayli for all j ∈ Z. Indeed, note that the restri-

tion of a funtor D(X−i,−) to DMeff
gm ould be expressed in terms of pr(X−i);

see Remark 3.2.1. Hene E2(T ) vanishes. Sine T onverges (see Proposition

4.4.1(2)) we obtain the laim.

2. Immediate from Corollary 4.2.2(1).

3. Immediate from Corollary 4.2.2(2).

Remark 6.1.3. For X = Mgm(Z), Z ∈ SmV ar, it easily seen that WC(X)
ould be desribed as a 'naive' limit of omplexes of motives; f. �1.5.

Now, the terms of t(X) are just the fators of (some possible) weight Postnikov

tower for X; so one an alulate them (at least, up to an isomorphism) for
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X = Mgm(Z). Unfortunately, it seems di�ult to desribe the boundary for

t(X) ompletely sine Hw is �ner than D
gen

.

6.2 The relation of the heart of w with HI (’Brown repre-
sentability’)

In Theorem 4.4.2(4) of [6℄, for a pair of adjaent strutures (w, t) for C
(see Remark 2.5.7) it was proved that Ht is a full subategory of Hw∗(=
AddFun(Hwop, Ab)). This result annot be extended to arbitrary orthog-

onal strutures sine our de�nition of a duality did not inlude any non-

degenerateness onditions (in partiular, Φ ould be 0). Yet for our main

example of orthogonal strutures the statement is true; moreover, HI has a

natural desription in terms of Hw. This statement is very similar to a ertain

Brown representability-type result (for adjaent strutures) proved in Theorem

4.5.2(II.2) of ibid.

Note thatHw is losed with respet to arbitrary small produts; see Proposition

4.1.1(2).

Proposition 6.2.1. HI is naturally isomorphi to a full abelian subategory

Hw′
∗ of Hw∗ that onsists of funtors that onvert all produts in Hw into

diret sums (of the orresponding abelian groups).

Proof. First, note that for any G ∈ ObjDMeff
− the funtor D→ Ab that sends

X ∈ ObjD to Φ(X,G) (Φ is the duality onstruted in Proposition 4.5.1) is

ohomologial. Moreover, it onverts homotopy limits into injetive limits (of

the orresponding abelian groups); hene its restrition to Hw belongs to Hw′
∗.

We obtain an additive funtor DMeff
gm → Hw′

∗. In fat, it fatorizes through

HI (by (25)). For G ∈ ObjHI we denote the funtor Hw → Ab obtained by

G′
.

Next, for any (additive) F : Hwop → Ab we de�ne F ′ : Ds → Ab by:

F ′(X) = (Ker(F (X0)→ F (X−1))/ Im(F (X1)→ F (X0)); (32)

here Xi
is a weight omplex for X. It easily seen from Lemma 6.1.1 that F ′

is

a well-de�ned ohomologial funtor. Moreover, Theorem 2.2.1(19) yields that

F ′
vanishes on D

w≤−1
s and on D

w≥1
s (sine it vanishes on D

w=i
s for all i 6= 0).

Hene F ′
de�nes an additive funtor F ′′ = F ′ ◦Mgm : SmCorop → Ab i.e. a

presheaf with transfers. Sine Mgm(Z) ∼= Mgm(Z × A1) for any Z ∈ SmV ar,
F ′′

is homotopy invariant. We should hek that F ′′
is atually a (Nisnevih)

sheaf. By Proposition 5.5 of [26℄, it su�es to hek that F ′′
is a Zariski sheaf.

Now, the the Mayer-Vietoris triangle for motives (�2 of [25℄) yields: to any

Zariski overing U
∐

V → U ∪ V there orresponds a long exat sequene

· · · → F
′(Mgm(U ∩ V )[1]) → F

′′(U ∪ V ) → F
′′(U)

⊕
F

′′(V ) → F
′′(U ∩ V ) → . . .

SineMgm(U∩V ) ∈ D
w≤0
s by part 5 of Proposition 4.1.1, we have F ′(Mgm(U∩

V )[1]) = {0}; hene F ′′
is a sheaf indeed.
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So, F 7→ F ′′
yields an additive funtor Hw∗ → HI.

Now we hek that the funtor G 7→ G′
(desribed above) and the restritions

of F 7→ F ′′
to Hw′

∗ ⊂ Hw∗ yield mutually inverse equivalenes of the ategories

in question.

(24) immediately yields that the funtor HI → HI that sends G ∈ ObjHI to

(G′)′′ is isomorphi to idHI .

Now for F ∈ ObjHw′
∗ we should hek: for any P ∈ D

w=0
s we have a natu-

ral isomorphism (F ′′)′(P ) ∼= F (P ). Sine Hw is the idempotent ompletion

of H, it su�es to onsider P being of the form

∏
l∈L Mgm(Kl)(nl)[nl] (here

Kl are funtion �elds over k, nl ≥ 0; nl and the transendene degrees of

Kl/k are bounded); see part 2 of Proposition 4.1.1. Moreover, sine F on-

verts produts into diret sums, it su�es to onsider P = Mgm(K ′)(n)[n]
(K ′/k is a funtion �eld, n ≥ 0). Lastly, part 2 of Corollary 4.2.2 redues the

situation to the ase P = Mgm(K) (K/k is a funtion �eld). Now, by the de�-

nition of the funtor G 7→ G′
, we have (F ′′)′(Mgm(K)) = lim

−→l∈L
F ′′(Mgm(Ul)),

where K = lim
←−l∈L

Ul, Ul ∈ SmV ar. We have F ′′(Ul) = KerF (Mgm(K)) →

F (
∏

z∈U1
l
Mgm(z)(1)[1]); here U1

l is the set of points of Ul of odimen-

sion 1. Sine F (
∏

z∈U1
l
Mgm(z)(1)[1]) = ⊕z∈U1

l
F (Mgm(z)(1)[1]); we have

lim
−→l∈L

F (
∏

z∈U1
l
Mgm(z)(1)[1]) = {0}; this yields the result.

6.3 Motives and comotives with rational and torsion coeffi-
cients

Above we onsidered (o)motives with integral oe�ients. Yet, as was shown

in [20℄, one ould do the theory of motives with oe�ients in an arbitrary

ommutative assoiative ring with a unitR. One should start with the naturally
de�ned ategory of R-orrespondenes: Obj(SmCorR) = SmV ar; for X,Y in

SmV ar we set SmCorR(X,Y ) =
⊕

U R for all integral losed U ⊂ X×Y that

are �nite over X and dominant over a onneted omponent of X. Then one

obtains a theory of motives that would satisfy all properties that are required in

order to dedue the main results of this paper. So, we an de�ne R-omotives

and extend our results to them.

A well-known ase of motives with oe�ients are the motives with rational

oe�ients (note that Q is a �at Z-algebra). Yet, one ould also take R = Z/nZ
for any n prime to char k.

So, the results of this paper are also valid for rational (o)motives and 'torsion'

(o)motives.

Still, note that there ould be idempotents for R-motives that do not ome

from integral ones. In partiular, for the naturally de�ned rational motivi

ategories we have DMeff
gm Q 6= DMeff

gm ⊗ Q; also ChoweffQ 6= Choweff ⊗ Q

(here ChoweffQ ⊂ DMeff
gm Q denote the orresponding R-hulls). Certainly,

this does not matter at all in the urrent paper.
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6.4 Another possibility for D; motives with compact support of
pro-schemes

In the ase char k = 0, Voevodsky developed a nie theory of motives with

ompat support that is ompatible with Poinare duality; see Theorem 4.3.7

of [25℄. Moreover, the expliit onstrutions of [25℄ yield that the funtor of

motif with ompat support M c
gm : SmV arop → DMeff

gm is ompatible with

a ertain jc : SmV aropfl → C−(Shv(SmCor)) (whih sends X to the Suslin

omplex of Lc(X), see �4.2 lo.it.); this observation was kindly ommuniated

to the author by Bruno Kahn). This allows to de�ne jc(V ) for a pro-sheme

V as the orresponding diret limit (in C(Shv(SmCor))).

Starting from this observation, one ould try to develop an analogue of our

theory using the funtor M c
gm. One ould onsider D = DMeff

−
op
; then it

would ontain DMeff
gm

op
as the full ategory of oompat objets. It seems

that our arguments ould be arried over to this ontext. One an onstrut

some D
′
for this D using ertain di�erential graded ategories.

Though motives with ompat support are Poinare dual to ordinary motives

of smooth varieties (up to a ertain Tate twist), we do not have a ovariant

embedding DMeff
gm → D (for this 'alternative' D), sine (the whole) DMeff

gm is

not self-dual. Still, DMeff
gm has a nie embedding into (Voevodsky's) self-dual

ategory DMgm; it ontains an exhausting system of self-dual subategories.

Hene this alternative D would yield a theory that is ompatible with (though

not 'isomorphi' to) the theory developed above.

Sine the alternative version of D is losely related with DMeff
−

op
, it seems

reasonable to all its objets omotives (as we did for the objets of 'our' D).

These observations show that one an dualize all the diret summands results

of �4 to obtain their natural analogues for motives of pro-shemes with ompat

support. Indeed, to prove them we may apply the duals of our arguments in

�4 without any problem; see part 2 of Remark 3.1.2. Note that we obtain

ertain diret summand statements for objets of DMeff
− this way. This is an

advantage of our 'axiomati' approah in �3.1.

One ould also take D
op = ∪n∈ZDMeff

gm (−n) (more preisely, this is the diret

limit of opies of DMeff
gm with onneting morphisms being − ⊗ Z(1)). Then

we have a ovariant embedding DMeff
gm → DMgm → D.

Note that both of these alternative versions of D are not losed with respet to

all (ountable) produts, and so not losed with respet to all (�ltered ount-

able) homotopy limits; yet they ontain all produts and homotopy limits that

are required for our main arguments.

6.5 What happens if k is uncountable

We desribe whih of the arguments above ould be applied in the ase of an

unountable k (and for whih of them the author has no idea how to ahieve

this). The author warns that he didn't hek the details thoroughly here.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 115

As we have already noted above, it is no problem to de�ne D, D
′
, or even Ds

for any k. The main problem here that (if k is unountable) the omotives of

generi points of varieties (and of other pro-shemes) an usually be presented

only as unountable homotopy limits of motives of varieties. The general for-

malism of inverse limits (applied to the ategories of modules over a di�erential

graded ategory) allows to extend to this ase all parts of Proposition 3.1.1 ex-

pet part 9. This atually means that instead of the short exat sequene (28)

one obtains a spetral sequene whose E1-terms are ertain lim
←−

j
; here lim

←−
j
is

the j's derived funtor of lim
←−I

; f. Appendix A of [21℄. This does not seem to

be atastrophi; yet the author has absolutely no idea how to ontrol higher

projetive limits in the proof of Proposition 3.5.1; note that part 2 of lo.it.

is espeially important for the onstrution of the Gersten weight struture.

Besides, the author does not know how to pass to an unountable homotopy

limit in the Gysin distinguished triangle. It seems that to this end one either

needs to lift the funtoriality of the (usual) motivi Gysin triangle to D
′
, or

to �nd a way to desribe the isomorphism lass of an unountable homotopy

limit in D in terms of D-only (i.e. without �xing any lifts to D
′
; this seems to

be impossible in general). So, one ould de�ne the 'Gersten' weight tower for a

omotif of a pro-sheme as as the homotopy limit of 'geometri towers' (as in the

proof of Corollary 3.6.2); yet it seems to be rather di�ult to alulate fators

of suh a tower. It seems that the problems mentioned do not beome simpler

for the alternative versions ofD desribed in �6.4. So, urrently the author does

not know how to prove the diret summand results of �4.2 if k is unountable

(they even ould be wrong). The problem here that the splittings of �4.2 are

not anonial (see Remark 4.2.3), so one annot apply a limit argument (as in

�4.6) here.

It seems that onstruting the Gersten weight struture is easier for Ds/Ds(n)
(for some n > 0); see �4.9.

Lastly, one an avoid the problems with homotopy limits ompletely by re-

striting attention to the subategory of Artin-Tate motives in DMeff
gm (i.e.

the triangulated ategory generated by Tate twists of motives of �nite exten-

sions of k, as onsidered in [30℄). Note that oniveau spetral sequenes for

ohomology of suh motives (ould be hosen to be) very 'eonomi'.
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